|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Training the distilled model. |
|
Supported architectures include: BERT -> DistilBERT, RoBERTa -> DistilRoBERTa, GPT2 -> DistilGPT2. |
|
""" |
|
import argparse |
|
import json |
|
import os |
|
import pickle |
|
import shutil |
|
|
|
import numpy as np |
|
import torch |
|
from distiller import Distiller |
|
from lm_seqs_dataset import LmSeqsDataset |
|
|
|
from transformers import ( |
|
BertConfig, |
|
BertForMaskedLM, |
|
BertTokenizer, |
|
DistilBertConfig, |
|
DistilBertForMaskedLM, |
|
DistilBertTokenizer, |
|
GPT2Config, |
|
GPT2LMHeadModel, |
|
GPT2Tokenizer, |
|
RobertaConfig, |
|
RobertaForMaskedLM, |
|
RobertaTokenizer, |
|
) |
|
from utils import git_log, init_gpu_params, logger, set_seed |
|
|
|
|
|
MODEL_CLASSES = { |
|
"distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), |
|
"roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), |
|
"bert": (BertConfig, BertForMaskedLM, BertTokenizer), |
|
"gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer), |
|
} |
|
|
|
|
|
def sanity_checks(args): |
|
""" |
|
A bunch of args sanity checks to perform even starting... |
|
""" |
|
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) |
|
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) |
|
if args.mlm: |
|
assert os.path.isfile(args.token_counts) |
|
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) |
|
else: |
|
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) |
|
|
|
assert args.teacher_type == args.student_type or ( |
|
args.student_type == "distilbert" and args.teacher_type == "bert" |
|
) |
|
assert os.path.isfile(args.student_config) |
|
if args.student_pretrained_weights is not None: |
|
assert os.path.isfile(args.student_pretrained_weights) |
|
|
|
if args.freeze_token_type_embds: |
|
assert args.student_type in ["roberta"] |
|
|
|
assert args.alpha_ce >= 0.0 |
|
assert args.alpha_mlm >= 0.0 |
|
assert args.alpha_clm >= 0.0 |
|
assert args.alpha_mse >= 0.0 |
|
assert args.alpha_cos >= 0.0 |
|
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 |
|
|
|
|
|
def freeze_pos_embeddings(student, args): |
|
if args.student_type == "roberta": |
|
student.roberta.embeddings.position_embeddings.weight.requires_grad = False |
|
elif args.student_type == "gpt2": |
|
student.transformer.wpe.weight.requires_grad = False |
|
|
|
|
|
def freeze_token_type_embeddings(student, args): |
|
if args.student_type == "roberta": |
|
student.roberta.embeddings.token_type_embeddings.weight.requires_grad = False |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description="Training") |
|
parser.add_argument("--force", action="store_true", help="Overwrite dump_path if it already exists.") |
|
|
|
parser.add_argument( |
|
"--dump_path", type=str, required=True, help="The output directory (log, checkpoints, parameters, etc.)" |
|
) |
|
parser.add_argument( |
|
"--data_file", |
|
type=str, |
|
required=True, |
|
help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence.", |
|
) |
|
|
|
parser.add_argument( |
|
"--student_type", |
|
type=str, |
|
choices=["distilbert", "roberta", "gpt2"], |
|
required=True, |
|
help="The student type (DistilBERT, RoBERTa).", |
|
) |
|
parser.add_argument("--student_config", type=str, required=True, help="Path to the student configuration.") |
|
parser.add_argument( |
|
"--student_pretrained_weights", default=None, type=str, help="Load student initialization checkpoint." |
|
) |
|
|
|
parser.add_argument( |
|
"--teacher_type", choices=["bert", "roberta", "gpt2"], required=True, help="Teacher type (BERT, RoBERTa)." |
|
) |
|
parser.add_argument("--teacher_name", type=str, required=True, help="The teacher model.") |
|
|
|
parser.add_argument("--temperature", default=2.0, type=float, help="Temperature for the softmax temperature.") |
|
parser.add_argument( |
|
"--alpha_ce", default=0.5, type=float, help="Linear weight for the distillation loss. Must be >=0." |
|
) |
|
parser.add_argument( |
|
"--alpha_mlm", |
|
default=0.0, |
|
type=float, |
|
help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.", |
|
) |
|
parser.add_argument("--alpha_clm", default=0.5, type=float, help="Linear weight for the CLM loss. Must be >=0.") |
|
parser.add_argument("--alpha_mse", default=0.0, type=float, help="Linear weight of the MSE loss. Must be >=0.") |
|
parser.add_argument( |
|
"--alpha_cos", default=0.0, type=float, help="Linear weight of the cosine embedding loss. Must be >=0." |
|
) |
|
|
|
parser.add_argument( |
|
"--mlm", action="store_true", help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." |
|
) |
|
parser.add_argument( |
|
"--mlm_mask_prop", |
|
default=0.15, |
|
type=float, |
|
help="Proportion of tokens for which we need to make a prediction.", |
|
) |
|
parser.add_argument("--word_mask", default=0.8, type=float, help="Proportion of tokens to mask out.") |
|
parser.add_argument("--word_keep", default=0.1, type=float, help="Proportion of tokens to keep.") |
|
parser.add_argument("--word_rand", default=0.1, type=float, help="Proportion of tokens to randomly replace.") |
|
parser.add_argument( |
|
"--mlm_smoothing", |
|
default=0.7, |
|
type=float, |
|
help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).", |
|
) |
|
parser.add_argument("--token_counts", type=str, help="The token counts in the data_file for MLM.") |
|
|
|
parser.add_argument( |
|
"--restrict_ce_to_mask", |
|
action="store_true", |
|
help="If true, compute the distillation loss only the [MLM] prediction distribution.", |
|
) |
|
parser.add_argument( |
|
"--freeze_pos_embs", |
|
action="store_true", |
|
help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.", |
|
) |
|
parser.add_argument( |
|
"--freeze_token_type_embds", |
|
action="store_true", |
|
help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.", |
|
) |
|
|
|
parser.add_argument("--n_epoch", type=int, default=3, help="Number of pass on the whole dataset.") |
|
parser.add_argument("--batch_size", type=int, default=5, help="Batch size (for each process).") |
|
parser.add_argument( |
|
"--group_by_size", |
|
action="store_false", |
|
help="If true, group sequences that have similar length into the same batch. Default is true.", |
|
) |
|
|
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=50, |
|
help="Gradient accumulation for larger training batches.", |
|
) |
|
parser.add_argument("--warmup_prop", default=0.05, type=float, help="Linear warmup proportion.") |
|
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") |
|
parser.add_argument("--learning_rate", default=5e-4, type=float, help="The initial learning rate for Adam.") |
|
parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") |
|
parser.add_argument("--max_grad_norm", default=5.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--initializer_range", default=0.02, type=float, help="Random initialization range.") |
|
|
|
parser.add_argument( |
|
"--fp16", |
|
action="store_true", |
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", |
|
) |
|
parser.add_argument( |
|
"--fp16_opt_level", |
|
type=str, |
|
default="O1", |
|
help=( |
|
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." |
|
"See details at https://nvidia.github.io/apex/amp.html" |
|
), |
|
) |
|
parser.add_argument("--n_gpu", type=int, default=1, help="Number of GPUs in the node.") |
|
parser.add_argument("--local_rank", type=int, default=-1, help="Distributed training - Local rank") |
|
parser.add_argument("--seed", type=int, default=56, help="Random seed") |
|
|
|
parser.add_argument("--log_interval", type=int, default=500, help="Tensorboard logging interval.") |
|
parser.add_argument("--checkpoint_interval", type=int, default=4000, help="Checkpoint interval.") |
|
args = parser.parse_args() |
|
sanity_checks(args) |
|
|
|
|
|
init_gpu_params(args) |
|
set_seed(args) |
|
if args.is_master: |
|
if os.path.exists(args.dump_path): |
|
if not args.force: |
|
raise ValueError( |
|
f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" |
|
" itUse `--force` if you want to overwrite it" |
|
) |
|
else: |
|
shutil.rmtree(args.dump_path) |
|
|
|
if not os.path.exists(args.dump_path): |
|
os.makedirs(args.dump_path) |
|
logger.info(f"Experiment will be dumped and logged in {args.dump_path}") |
|
|
|
|
|
logger.info(f"Param: {args}") |
|
with open(os.path.join(args.dump_path, "parameters.json"), "w") as f: |
|
json.dump(vars(args), f, indent=4) |
|
git_log(args.dump_path) |
|
|
|
student_config_class, student_model_class, _ = MODEL_CLASSES[args.student_type] |
|
teacher_config_class, teacher_model_class, teacher_tokenizer_class = MODEL_CLASSES[args.teacher_type] |
|
|
|
|
|
tokenizer = teacher_tokenizer_class.from_pretrained(args.teacher_name) |
|
special_tok_ids = {} |
|
for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): |
|
idx = tokenizer.all_special_tokens.index(tok_symbol) |
|
special_tok_ids[tok_name] = tokenizer.all_special_ids[idx] |
|
logger.info(f"Special tokens {special_tok_ids}") |
|
args.special_tok_ids = special_tok_ids |
|
args.max_model_input_size = tokenizer.max_model_input_sizes[args.teacher_name] |
|
|
|
|
|
logger.info(f"Loading data from {args.data_file}") |
|
with open(args.data_file, "rb") as fp: |
|
data = pickle.load(fp) |
|
|
|
if args.mlm: |
|
logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)") |
|
with open(args.token_counts, "rb") as fp: |
|
counts = pickle.load(fp) |
|
|
|
token_probs = np.maximum(counts, 1) ** -args.mlm_smoothing |
|
for idx in special_tok_ids.values(): |
|
token_probs[idx] = 0.0 |
|
token_probs = torch.from_numpy(token_probs) |
|
else: |
|
token_probs = None |
|
|
|
train_lm_seq_dataset = LmSeqsDataset(params=args, data=data) |
|
logger.info("Data loader created.") |
|
|
|
|
|
logger.info(f"Loading student config from {args.student_config}") |
|
stu_architecture_config = student_config_class.from_pretrained(args.student_config) |
|
stu_architecture_config.output_hidden_states = True |
|
|
|
if args.student_pretrained_weights is not None: |
|
logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}") |
|
student = student_model_class.from_pretrained(args.student_pretrained_weights, config=stu_architecture_config) |
|
else: |
|
student = student_model_class(stu_architecture_config) |
|
|
|
if args.n_gpu > 0: |
|
student.to(f"cuda:{args.local_rank}") |
|
logger.info("Student loaded.") |
|
|
|
|
|
teacher = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=True) |
|
if args.n_gpu > 0: |
|
teacher.to(f"cuda:{args.local_rank}") |
|
logger.info(f"Teacher loaded from {args.teacher_name}.") |
|
|
|
|
|
if args.freeze_pos_embs: |
|
freeze_pos_embeddings(student, args) |
|
if args.freeze_token_type_embds: |
|
freeze_token_type_embeddings(student, args) |
|
|
|
|
|
assert student.config.vocab_size == teacher.config.vocab_size |
|
assert student.config.hidden_size == teacher.config.hidden_size |
|
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings |
|
if args.mlm: |
|
assert token_probs.size(0) == stu_architecture_config.vocab_size |
|
|
|
|
|
torch.cuda.empty_cache() |
|
distiller = Distiller( |
|
params=args, dataset=train_lm_seq_dataset, token_probs=token_probs, student=student, teacher=teacher |
|
) |
|
distiller.train() |
|
logger.info("Let's go get some drinks.") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|