|
import gzip |
|
import hashlib |
|
import json |
|
import multiprocessing |
|
import os |
|
import re |
|
import shutil |
|
import time |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
from arguments import PreprocessingArguments |
|
from datasets import load_dataset |
|
from minhash_deduplication import deduplicate_dataset |
|
|
|
from transformers import AutoTokenizer, HfArgumentParser |
|
|
|
|
|
PATTERN = re.compile(r"\s+") |
|
|
|
|
|
def get_hash(example): |
|
"""Get hash of content field.""" |
|
return {"hash": hashlib.md5(re.sub(PATTERN, "", example["content"]).encode("utf-8")).hexdigest()} |
|
|
|
|
|
def line_stats(example): |
|
"""Calculates mean and max line length of file.""" |
|
line_lengths = [len(line) for line in example["content"].splitlines()] |
|
return {"line_mean": np.mean(line_lengths), "line_max": max(line_lengths)} |
|
|
|
|
|
def alpha_stats(example): |
|
"""Calculates mean and max line length of file.""" |
|
alpha_frac = np.mean([c.isalnum() for c in example["content"]]) |
|
return {"alpha_frac": alpha_frac} |
|
|
|
|
|
def check_uniques(example, uniques): |
|
"""Check if current hash is still in set of unique hashes and remove if true.""" |
|
if example["hash"] in uniques: |
|
uniques.remove(example["hash"]) |
|
return True |
|
else: |
|
return False |
|
|
|
|
|
def is_autogenerated(example, scan_width=5): |
|
"""Check if file is autogenerated by looking for keywords in the first few lines of the file.""" |
|
keywords = ["auto-generated", "autogenerated", "automatically generated"] |
|
lines = example["content"].splitlines() |
|
for _, line in zip(range(scan_width), lines): |
|
for keyword in keywords: |
|
if keyword in line.lower(): |
|
return {"autogenerated": True} |
|
else: |
|
return {"autogenerated": False} |
|
|
|
|
|
def is_config_or_test(example, scan_width=5, coeff=0.05): |
|
"""Check if file is a configuration file or a unit test by : |
|
1- looking for keywords in the first few lines of the file. |
|
2- counting number of occurence of the words 'config' and 'test' with respect to number of lines. |
|
""" |
|
|
|
keywords = ["unit tests", "test file", "configuration file"] |
|
lines = example["content"].splitlines() |
|
count_config = 0 |
|
count_test = 0 |
|
|
|
for _, line in zip(range(scan_width), lines): |
|
for keyword in keywords: |
|
if keyword in line.lower(): |
|
return {"config_or_test": True} |
|
|
|
nlines = example["content"].count("\n") |
|
threshold = int(coeff * nlines) |
|
for line in lines: |
|
count_config += line.lower().count("config") |
|
count_test += line.lower().count("test") |
|
if count_config > threshold or count_test > threshold: |
|
return {"config_or_test": True} |
|
return {"config_or_test": False} |
|
|
|
|
|
def has_no_keywords(example): |
|
"""Check if a python file has none of the keywords for: funcion, class, for loop, while loop.""" |
|
keywords = ["def ", "class ", "for ", "while "] |
|
lines = example["content"].splitlines() |
|
for line in lines: |
|
for keyword in keywords: |
|
if keyword in line.lower(): |
|
return {"has_no_keywords": False} |
|
return {"has_no_keywords": True} |
|
|
|
|
|
def has_few_assignments(example, minimum=4): |
|
"""Check if file uses symbol '=' less than `minimum` times.""" |
|
lines = example["content"].splitlines() |
|
counter = 0 |
|
for line in lines: |
|
counter += line.lower().count("=") |
|
if counter > minimum: |
|
return {"has_few_assignments": False} |
|
return {"has_few_assignments": True} |
|
|
|
|
|
def char_token_ratio(example): |
|
"""Compute character/token ratio of the file with tokenizer.""" |
|
input_ids = tokenizer(example["content"], truncation=False)["input_ids"] |
|
ratio = len(example["content"]) / len(input_ids) |
|
return {"ratio": ratio} |
|
|
|
|
|
def preprocess(example): |
|
"""Chain all preprocessing steps into one function to not fill cache.""" |
|
results = {} |
|
results.update(get_hash(example)) |
|
results.update(line_stats(example)) |
|
results.update(alpha_stats(example)) |
|
results.update(char_token_ratio(example)) |
|
results.update(is_autogenerated(example)) |
|
results.update(is_config_or_test(example)) |
|
results.update(has_no_keywords(example)) |
|
results.update(has_few_assignments(example)) |
|
return results |
|
|
|
|
|
def filter(example, uniques, args): |
|
"""Filter dataset with heuristics. Config, test and has_no_keywords files are removed with a given probability.""" |
|
if not check_uniques(example, uniques): |
|
return False |
|
elif example["autogenerated"]: |
|
return False |
|
elif example["line_max"] > args.line_max: |
|
return False |
|
elif example["line_mean"] > args.line_mean: |
|
return False |
|
elif example["alpha_frac"] < args.alpha_frac: |
|
return False |
|
elif example["ratio"] < args.min_token_ratio: |
|
return False |
|
elif example["config_or_test"] and np.random.rand() <= args.filter_proba: |
|
return False |
|
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: |
|
return False |
|
elif example["has_few_assignments"]: |
|
return False |
|
else: |
|
return True |
|
|
|
|
|
def compress_file(file_path): |
|
"""Compress a file with g-zip.""" |
|
with open(file_path, "rb") as f_in: |
|
with gzip.open(str(file_path) + ".gz", "wb", compresslevel=6) as f_out: |
|
shutil.copyfileobj(f_in, f_out) |
|
os.unlink(file_path) |
|
|
|
|
|
|
|
parser = HfArgumentParser(PreprocessingArguments) |
|
args = parser.parse_args() |
|
if args.num_workers is None: |
|
args.num_workers = multiprocessing.cpu_count() |
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir) |
|
|
|
|
|
t_start = time.time() |
|
ds = load_dataset(args.dataset_name, split="train") |
|
print(f"Time to load dataset: {time.time()-t_start:.2f}") |
|
|
|
|
|
t_start = time.time() |
|
ds = ds.map(preprocess, num_proc=args.num_workers) |
|
print(f"Time to preprocess dataset: {time.time()-t_start:.2f}") |
|
|
|
|
|
uniques = set(ds.unique("hash")) |
|
frac = len(uniques) / len(ds) |
|
print(f"Fraction of duplicates: {1-frac:.2%}") |
|
|
|
|
|
t_start = time.time() |
|
ds_filter = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) |
|
print(f"Time to filter dataset: {time.time()-t_start:.2f}") |
|
print(f"Size of filtered dataset: {len(ds_filter)}") |
|
|
|
|
|
if args.near_deduplication: |
|
t_start = time.time() |
|
ds_filter, duplicate_clusters = deduplicate_dataset(ds_filter, args.jaccard_threshold) |
|
print(f"Time to deduplicate dataset: {time.time()-t_start:.2f}") |
|
print(f"Size of deduplicate dataset: {len(ds_filter)}") |
|
|
|
|
|
output_dir = Path(args.output_dir) |
|
output_dir.mkdir(exist_ok=True) |
|
|
|
|
|
|
|
if args.near_deduplication: |
|
with open(output_dir / "duplicate_clusters.json", "w") as f: |
|
json.dump(duplicate_clusters, f) |
|
|
|
data_dir = output_dir / "data" |
|
data_dir.mkdir(exist_ok=True) |
|
|
|
t_start = time.time() |
|
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): |
|
file_path = str(data_dir / f"file-{file_number+1:012}.json") |
|
end_index = min(len(ds_filter), index + args.samples_per_file) |
|
ds_filter.select(list(range(index, end_index))).to_json(file_path) |
|
compress_file(file_path) |
|
print(f"Time to save dataset: {time.time()-t_start:.2f}") |
|
|