|
|
|
import argparse |
|
import logging |
|
import os |
|
import sys |
|
from collections import namedtuple |
|
|
|
import torch |
|
from modeling_bertabs import BertAbs, build_predictor |
|
from torch.utils.data import DataLoader, SequentialSampler |
|
from tqdm import tqdm |
|
|
|
from transformers import BertTokenizer |
|
|
|
from .utils_summarization import ( |
|
CNNDMDataset, |
|
build_mask, |
|
compute_token_type_ids, |
|
encode_for_summarization, |
|
truncate_or_pad, |
|
) |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
logging.basicConfig(stream=sys.stdout, level=logging.INFO) |
|
|
|
|
|
Batch = namedtuple("Batch", ["document_names", "batch_size", "src", "segs", "mask_src", "tgt_str"]) |
|
|
|
|
|
def evaluate(args): |
|
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True) |
|
model = BertAbs.from_pretrained("remi/bertabs-finetuned-extractive-abstractive-summarization") |
|
model.to(args.device) |
|
model.eval() |
|
|
|
symbols = { |
|
"BOS": tokenizer.vocab["[unused0]"], |
|
"EOS": tokenizer.vocab["[unused1]"], |
|
"PAD": tokenizer.vocab["[PAD]"], |
|
} |
|
|
|
if args.compute_rouge: |
|
reference_summaries = [] |
|
generated_summaries = [] |
|
|
|
import nltk |
|
import rouge |
|
|
|
nltk.download("punkt") |
|
rouge_evaluator = rouge.Rouge( |
|
metrics=["rouge-n", "rouge-l"], |
|
max_n=2, |
|
limit_length=True, |
|
length_limit=args.beam_size, |
|
length_limit_type="words", |
|
apply_avg=True, |
|
apply_best=False, |
|
alpha=0.5, |
|
weight_factor=1.2, |
|
stemming=True, |
|
) |
|
|
|
|
|
|
|
args.result_path = "" |
|
args.temp_dir = "" |
|
|
|
data_iterator = build_data_iterator(args, tokenizer) |
|
predictor = build_predictor(args, tokenizer, symbols, model) |
|
|
|
logger.info("***** Running evaluation *****") |
|
logger.info(" Number examples = %d", len(data_iterator.dataset)) |
|
logger.info(" Batch size = %d", args.batch_size) |
|
logger.info("") |
|
logger.info("***** Beam Search parameters *****") |
|
logger.info(" Beam size = %d", args.beam_size) |
|
logger.info(" Minimum length = %d", args.min_length) |
|
logger.info(" Maximum length = %d", args.max_length) |
|
logger.info(" Alpha (length penalty) = %.2f", args.alpha) |
|
logger.info(" Trigrams %s be blocked", ("will" if args.block_trigram else "will NOT")) |
|
|
|
for batch in tqdm(data_iterator): |
|
batch_data = predictor.translate_batch(batch) |
|
translations = predictor.from_batch(batch_data) |
|
summaries = [format_summary(t) for t in translations] |
|
save_summaries(summaries, args.summaries_output_dir, batch.document_names) |
|
|
|
if args.compute_rouge: |
|
reference_summaries += batch.tgt_str |
|
generated_summaries += summaries |
|
|
|
if args.compute_rouge: |
|
scores = rouge_evaluator.get_scores(generated_summaries, reference_summaries) |
|
str_scores = format_rouge_scores(scores) |
|
save_rouge_scores(str_scores) |
|
print(str_scores) |
|
|
|
|
|
def save_summaries(summaries, path, original_document_name): |
|
"""Write the summaries in fies that are prefixed by the original |
|
files' name with the `_summary` appended. |
|
|
|
Attributes: |
|
original_document_names: List[string] |
|
Name of the document that was summarized. |
|
path: string |
|
Path were the summaries will be written |
|
summaries: List[string] |
|
The summaries that we produced. |
|
""" |
|
for summary, document_name in zip(summaries, original_document_name): |
|
|
|
if "." in document_name: |
|
bare_document_name = ".".join(document_name.split(".")[:-1]) |
|
extension = document_name.split(".")[-1] |
|
name = bare_document_name + "_summary." + extension |
|
else: |
|
name = document_name + "_summary" |
|
|
|
file_path = os.path.join(path, name) |
|
with open(file_path, "w") as output: |
|
output.write(summary) |
|
|
|
|
|
def format_summary(translation): |
|
"""Transforms the output of the `from_batch` function |
|
into nicely formatted summaries. |
|
""" |
|
raw_summary, _, _ = translation |
|
summary = ( |
|
raw_summary.replace("[unused0]", "") |
|
.replace("[unused3]", "") |
|
.replace("[PAD]", "") |
|
.replace("[unused1]", "") |
|
.replace(r" +", " ") |
|
.replace(" [unused2] ", ". ") |
|
.replace("[unused2]", "") |
|
.strip() |
|
) |
|
|
|
return summary |
|
|
|
|
|
def format_rouge_scores(scores): |
|
return """\n |
|
****** ROUGE SCORES ****** |
|
|
|
** ROUGE 1 |
|
F1 >> {:.3f} |
|
Precision >> {:.3f} |
|
Recall >> {:.3f} |
|
|
|
** ROUGE 2 |
|
F1 >> {:.3f} |
|
Precision >> {:.3f} |
|
Recall >> {:.3f} |
|
|
|
** ROUGE L |
|
F1 >> {:.3f} |
|
Precision >> {:.3f} |
|
Recall >> {:.3f}""".format( |
|
scores["rouge-1"]["f"], |
|
scores["rouge-1"]["p"], |
|
scores["rouge-1"]["r"], |
|
scores["rouge-2"]["f"], |
|
scores["rouge-2"]["p"], |
|
scores["rouge-2"]["r"], |
|
scores["rouge-l"]["f"], |
|
scores["rouge-l"]["p"], |
|
scores["rouge-l"]["r"], |
|
) |
|
|
|
|
|
def save_rouge_scores(str_scores): |
|
with open("rouge_scores.txt", "w") as output: |
|
output.write(str_scores) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_data_iterator(args, tokenizer): |
|
dataset = load_and_cache_examples(args, tokenizer) |
|
sampler = SequentialSampler(dataset) |
|
|
|
def collate_fn(data): |
|
return collate(data, tokenizer, block_size=512, device=args.device) |
|
|
|
iterator = DataLoader( |
|
dataset, |
|
sampler=sampler, |
|
batch_size=args.batch_size, |
|
collate_fn=collate_fn, |
|
) |
|
|
|
return iterator |
|
|
|
|
|
def load_and_cache_examples(args, tokenizer): |
|
dataset = CNNDMDataset(args.documents_dir) |
|
return dataset |
|
|
|
|
|
def collate(data, tokenizer, block_size, device): |
|
"""Collate formats the data passed to the data loader. |
|
|
|
In particular we tokenize the data batch after batch to avoid keeping them |
|
all in memory. We output the data as a namedtuple to fit the original BertAbs's |
|
API. |
|
""" |
|
data = [x for x in data if not len(x[1]) == 0] |
|
names = [name for name, _, _ in data] |
|
summaries = [" ".join(summary_list) for _, _, summary_list in data] |
|
|
|
encoded_text = [encode_for_summarization(story, summary, tokenizer) for _, story, summary in data] |
|
encoded_stories = torch.tensor( |
|
[truncate_or_pad(story, block_size, tokenizer.pad_token_id) for story, _ in encoded_text] |
|
) |
|
encoder_token_type_ids = compute_token_type_ids(encoded_stories, tokenizer.cls_token_id) |
|
encoder_mask = build_mask(encoded_stories, tokenizer.pad_token_id) |
|
|
|
batch = Batch( |
|
document_names=names, |
|
batch_size=len(encoded_stories), |
|
src=encoded_stories.to(device), |
|
segs=encoder_token_type_ids.to(device), |
|
mask_src=encoder_mask.to(device), |
|
tgt_str=summaries, |
|
) |
|
|
|
return batch |
|
|
|
|
|
def decode_summary(summary_tokens, tokenizer): |
|
"""Decode the summary and return it in a format |
|
suitable for evaluation. |
|
""" |
|
summary_tokens = summary_tokens.to("cpu").numpy() |
|
summary = tokenizer.decode(summary_tokens) |
|
sentences = summary.split(".") |
|
sentences = [s + "." for s in sentences] |
|
return sentences |
|
|
|
|
|
def main(): |
|
"""The main function defines the interface with the users.""" |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--documents_dir", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The folder where the documents to summarize are located.", |
|
) |
|
parser.add_argument( |
|
"--summaries_output_dir", |
|
default=None, |
|
type=str, |
|
required=False, |
|
help="The folder in wich the summaries should be written. Defaults to the folder where the documents are", |
|
) |
|
parser.add_argument( |
|
"--compute_rouge", |
|
default=False, |
|
type=bool, |
|
required=False, |
|
help="Compute the ROUGE metrics during evaluation. Only available for the CNN/DailyMail dataset.", |
|
) |
|
|
|
parser.add_argument( |
|
"--no_cuda", |
|
default=False, |
|
type=bool, |
|
help="Whether to force the execution on CPU.", |
|
) |
|
parser.add_argument( |
|
"--batch_size", |
|
default=4, |
|
type=int, |
|
help="Batch size per GPU/CPU for training.", |
|
) |
|
|
|
parser.add_argument( |
|
"--min_length", |
|
default=50, |
|
type=int, |
|
help="Minimum number of tokens for the summaries.", |
|
) |
|
parser.add_argument( |
|
"--max_length", |
|
default=200, |
|
type=int, |
|
help="Maixmum number of tokens for the summaries.", |
|
) |
|
parser.add_argument( |
|
"--beam_size", |
|
default=5, |
|
type=int, |
|
help="The number of beams to start with for each example.", |
|
) |
|
parser.add_argument( |
|
"--alpha", |
|
default=0.95, |
|
type=float, |
|
help="The value of alpha for the length penalty in the beam search.", |
|
) |
|
parser.add_argument( |
|
"--block_trigram", |
|
default=True, |
|
type=bool, |
|
help="Whether to block the existence of repeating trigrams in the text generated by beam search.", |
|
) |
|
args = parser.parse_args() |
|
|
|
|
|
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
|
|
|
|
|
if not args.summaries_output_dir: |
|
args.summaries_output_dir = args.documents_dir |
|
|
|
if not documents_dir_is_valid(args.documents_dir): |
|
raise FileNotFoundError( |
|
"We could not find the directory you specified for the documents to summarize, or it was empty. Please" |
|
" specify a valid path." |
|
) |
|
os.makedirs(args.summaries_output_dir, exist_ok=True) |
|
|
|
evaluate(args) |
|
|
|
|
|
def documents_dir_is_valid(path): |
|
if not os.path.exists(path): |
|
return False |
|
|
|
file_list = os.listdir(path) |
|
if len(file_list) == 0: |
|
return False |
|
|
|
return True |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|