|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Fine-tuning the library models for named entity recognition on CoNLL-2003. """ |
|
import logging |
|
import os |
|
import sys |
|
from dataclasses import dataclass, field |
|
from importlib import import_module |
|
from typing import Dict, List, Optional, Tuple |
|
|
|
import numpy as np |
|
from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score |
|
from torch import nn |
|
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForTokenClassification, |
|
AutoTokenizer, |
|
DataCollatorWithPadding, |
|
EvalPrediction, |
|
HfArgumentParser, |
|
Trainer, |
|
TrainingArguments, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import is_main_process |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
task_type: Optional[str] = field( |
|
default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) |
|
|
|
|
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
data_dir: str = field( |
|
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} |
|
) |
|
labels: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}, |
|
) |
|
max_seq_length: int = field( |
|
default=128, |
|
metadata={ |
|
"help": ( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
if ( |
|
os.path.exists(training_args.output_dir) |
|
and os.listdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" |
|
" --overwrite_output_dir to overcome." |
|
) |
|
|
|
module = import_module("tasks") |
|
try: |
|
token_classification_task_clazz = getattr(module, model_args.task_type) |
|
token_classification_task: TokenClassificationTask = token_classification_task_clazz() |
|
except AttributeError: |
|
raise ValueError( |
|
f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " |
|
f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, |
|
) |
|
logger.warning( |
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", |
|
training_args.local_rank, |
|
training_args.device, |
|
training_args.n_gpu, |
|
bool(training_args.local_rank != -1), |
|
training_args.fp16, |
|
) |
|
|
|
if is_main_process(training_args.local_rank): |
|
transformers.utils.logging.set_verbosity_info() |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
labels = token_classification_task.get_labels(data_args.labels) |
|
label_map: Dict[int, str] = dict(enumerate(labels)) |
|
num_labels = len(labels) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path, |
|
num_labels=num_labels, |
|
id2label=label_map, |
|
label2id={label: i for i, label in enumerate(labels)}, |
|
cache_dir=model_args.cache_dir, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast, |
|
) |
|
model = AutoModelForTokenClassification.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_tf=bool(".ckpt" in model_args.model_name_or_path), |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
) |
|
|
|
|
|
train_dataset = ( |
|
TokenClassificationDataset( |
|
token_classification_task=token_classification_task, |
|
data_dir=data_args.data_dir, |
|
tokenizer=tokenizer, |
|
labels=labels, |
|
model_type=config.model_type, |
|
max_seq_length=data_args.max_seq_length, |
|
overwrite_cache=data_args.overwrite_cache, |
|
mode=Split.train, |
|
) |
|
if training_args.do_train |
|
else None |
|
) |
|
eval_dataset = ( |
|
TokenClassificationDataset( |
|
token_classification_task=token_classification_task, |
|
data_dir=data_args.data_dir, |
|
tokenizer=tokenizer, |
|
labels=labels, |
|
model_type=config.model_type, |
|
max_seq_length=data_args.max_seq_length, |
|
overwrite_cache=data_args.overwrite_cache, |
|
mode=Split.dev, |
|
) |
|
if training_args.do_eval |
|
else None |
|
) |
|
|
|
def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]: |
|
preds = np.argmax(predictions, axis=2) |
|
|
|
batch_size, seq_len = preds.shape |
|
|
|
out_label_list = [[] for _ in range(batch_size)] |
|
preds_list = [[] for _ in range(batch_size)] |
|
|
|
for i in range(batch_size): |
|
for j in range(seq_len): |
|
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: |
|
out_label_list[i].append(label_map[label_ids[i][j]]) |
|
preds_list[i].append(label_map[preds[i][j]]) |
|
|
|
return preds_list, out_label_list |
|
|
|
def compute_metrics(p: EvalPrediction) -> Dict: |
|
preds_list, out_label_list = align_predictions(p.predictions, p.label_ids) |
|
return { |
|
"accuracy_score": accuracy_score(out_label_list, preds_list), |
|
"precision": precision_score(out_label_list, preds_list), |
|
"recall": recall_score(out_label_list, preds_list), |
|
"f1": f1_score(out_label_list, preds_list), |
|
} |
|
|
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) if training_args.fp16 else None |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
compute_metrics=compute_metrics, |
|
data_collator=data_collator, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
trainer.train( |
|
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None |
|
) |
|
trainer.save_model() |
|
|
|
|
|
if trainer.is_world_process_zero(): |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
|
|
|
|
results = {} |
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
|
|
result = trainer.evaluate() |
|
|
|
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") |
|
if trainer.is_world_process_zero(): |
|
with open(output_eval_file, "w") as writer: |
|
logger.info("***** Eval results *****") |
|
for key, value in result.items(): |
|
logger.info(" %s = %s", key, value) |
|
writer.write("%s = %s\n" % (key, value)) |
|
|
|
results.update(result) |
|
|
|
|
|
if training_args.do_predict: |
|
test_dataset = TokenClassificationDataset( |
|
token_classification_task=token_classification_task, |
|
data_dir=data_args.data_dir, |
|
tokenizer=tokenizer, |
|
labels=labels, |
|
model_type=config.model_type, |
|
max_seq_length=data_args.max_seq_length, |
|
overwrite_cache=data_args.overwrite_cache, |
|
mode=Split.test, |
|
) |
|
|
|
predictions, label_ids, metrics = trainer.predict(test_dataset) |
|
preds_list, _ = align_predictions(predictions, label_ids) |
|
|
|
output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt") |
|
if trainer.is_world_process_zero(): |
|
with open(output_test_results_file, "w") as writer: |
|
for key, value in metrics.items(): |
|
logger.info(" %s = %s", key, value) |
|
writer.write("%s = %s\n" % (key, value)) |
|
|
|
|
|
output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt") |
|
if trainer.is_world_process_zero(): |
|
with open(output_test_predictions_file, "w") as writer: |
|
with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f: |
|
token_classification_task.write_predictions_to_file(writer, f, preds_list) |
|
|
|
return results |
|
|
|
|
|
def _mp_fn(index): |
|
|
|
main() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|