|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
from seq2seq_trainer import arg_to_scheduler |
|
|
|
from transformers import TrainingArguments |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class Seq2SeqTrainingArguments(TrainingArguments): |
|
""" |
|
Parameters: |
|
label_smoothing (:obj:`float`, `optional`, defaults to 0): |
|
The label smoothing epsilon to apply (if not zero). |
|
sortish_sampler (:obj:`bool`, `optional`, defaults to :obj:`False`): |
|
Whether to SortishSamler or not. It sorts the inputs according to lenghts in-order to minimizing the padding size. |
|
predict_with_generate (:obj:`bool`, `optional`, defaults to :obj:`False`): |
|
Whether to use generate to calculate generative metrics (ROUGE, BLEU). |
|
""" |
|
|
|
label_smoothing: Optional[float] = field( |
|
default=0.0, metadata={"help": "The label smoothing epsilon to apply (if not zero)."} |
|
) |
|
sortish_sampler: bool = field(default=False, metadata={"help": "Whether to SortishSamler or not."}) |
|
predict_with_generate: bool = field( |
|
default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} |
|
) |
|
adafactor: bool = field(default=False, metadata={"help": "whether to use adafactor"}) |
|
encoder_layerdrop: Optional[float] = field( |
|
default=None, metadata={"help": "Encoder layer dropout probability. Goes into model.config."} |
|
) |
|
decoder_layerdrop: Optional[float] = field( |
|
default=None, metadata={"help": "Decoder layer dropout probability. Goes into model.config."} |
|
) |
|
dropout: Optional[float] = field(default=None, metadata={"help": "Dropout probability. Goes into model.config."}) |
|
attention_dropout: Optional[float] = field( |
|
default=None, metadata={"help": "Attention dropout probability. Goes into model.config."} |
|
) |
|
lr_scheduler: Optional[str] = field( |
|
default="linear", |
|
metadata={"help": f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys())}"}, |
|
) |
|
|