|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
from torch.utils.data import DistributedSampler, RandomSampler |
|
|
|
from transformers import PreTrainedModel, Trainer, logging |
|
from transformers.integrations import is_fairscale_available |
|
from transformers.models.fsmt.configuration_fsmt import FSMTConfig |
|
from transformers.optimization import ( |
|
Adafactor, |
|
AdamW, |
|
get_constant_schedule, |
|
get_constant_schedule_with_warmup, |
|
get_cosine_schedule_with_warmup, |
|
get_cosine_with_hard_restarts_schedule_with_warmup, |
|
get_linear_schedule_with_warmup, |
|
get_polynomial_decay_schedule_with_warmup, |
|
) |
|
from transformers.trainer_pt_utils import get_tpu_sampler |
|
from transformers.training_args import ParallelMode |
|
from transformers.utils import is_torch_tpu_available |
|
|
|
|
|
if is_fairscale_available(): |
|
from fairscale.optim import OSS |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
arg_to_scheduler = { |
|
"linear": get_linear_schedule_with_warmup, |
|
"cosine": get_cosine_schedule_with_warmup, |
|
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, |
|
"polynomial": get_polynomial_decay_schedule_with_warmup, |
|
"constant": get_constant_schedule, |
|
"constant_w_warmup": get_constant_schedule_with_warmup, |
|
} |
|
|
|
|
|
class Seq2SeqTrainer(Trainer): |
|
def __init__(self, config=None, data_args=None, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
if config is None: |
|
assert isinstance(self.model, PreTrainedModel), ( |
|
"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" |
|
f" {self.model.__class__}" |
|
) |
|
self.config = self.model.config |
|
else: |
|
self.config = config |
|
|
|
self.data_args = data_args |
|
self.vocab_size = self.config.tgt_vocab_size if isinstance(self.config, FSMTConfig) else self.config.vocab_size |
|
|
|
if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): |
|
assert self.config.pad_token_id is not None, ( |
|
"Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" |
|
" calculation or doing label smoothing." |
|
) |
|
|
|
if self.config.pad_token_id is None and self.config.eos_token_id is not None: |
|
logger.warning( |
|
f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" |
|
" padding.." |
|
) |
|
|
|
if self.args.label_smoothing == 0: |
|
self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id) |
|
else: |
|
|
|
from utils import label_smoothed_nll_loss |
|
|
|
self.loss_fn = label_smoothed_nll_loss |
|
|
|
def create_optimizer_and_scheduler(self, num_training_steps: int): |
|
""" |
|
Setup the optimizer and the learning rate scheduler. |
|
|
|
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the |
|
Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass. |
|
""" |
|
if self.optimizer is None: |
|
no_decay = ["bias", "LayerNorm.weight"] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
"weight_decay": self.args.weight_decay, |
|
}, |
|
{ |
|
"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], |
|
"weight_decay": 0.0, |
|
}, |
|
] |
|
optimizer_cls = Adafactor if self.args.adafactor else AdamW |
|
if self.args.adafactor: |
|
optimizer_cls = Adafactor |
|
optimizer_kwargs = {"scale_parameter": False, "relative_step": False} |
|
else: |
|
optimizer_cls = AdamW |
|
optimizer_kwargs = { |
|
"betas": (self.args.adam_beta1, self.args.adam_beta2), |
|
"eps": self.args.adam_epsilon, |
|
} |
|
optimizer_kwargs["lr"] = self.args.learning_rate |
|
if self.sharded_ddp: |
|
self.optimizer = OSS( |
|
params=optimizer_grouped_parameters, |
|
optim=optimizer_cls, |
|
**optimizer_kwargs, |
|
) |
|
else: |
|
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) |
|
|
|
if self.lr_scheduler is None: |
|
self.lr_scheduler = self._get_lr_scheduler(num_training_steps) |
|
else: |
|
logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.") |
|
|
|
def _get_lr_scheduler(self, num_training_steps): |
|
schedule_func = arg_to_scheduler[self.args.lr_scheduler] |
|
if self.args.lr_scheduler == "constant": |
|
scheduler = schedule_func(self.optimizer) |
|
elif self.args.lr_scheduler == "constant_w_warmup": |
|
scheduler = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps) |
|
else: |
|
scheduler = schedule_func( |
|
self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps |
|
) |
|
return scheduler |
|
|
|
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]: |
|
if isinstance(self.train_dataset, torch.utils.data.IterableDataset): |
|
return None |
|
elif is_torch_tpu_available(): |
|
return get_tpu_sampler(self.train_dataset) |
|
else: |
|
if self.args.sortish_sampler: |
|
self.train_dataset.make_sortish_sampler( |
|
self.args.per_device_train_batch_size, |
|
distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), |
|
) |
|
|
|
return ( |
|
RandomSampler(self.train_dataset) |
|
if self.args.local_rank == -1 |
|
else DistributedSampler(self.train_dataset) |
|
) |
|
|
|
def _compute_loss(self, model, inputs, labels): |
|
if self.args.label_smoothing == 0: |
|
if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: |
|
|
|
logits = model(**inputs, use_cache=False)[0] |
|
loss = self.loss_fn(logits.view(-1, logits.shape[-1]), labels.view(-1)) |
|
else: |
|
|
|
loss, logits = model(**inputs, labels=labels, use_cache=False)[:2] |
|
else: |
|
|
|
logits = model(**inputs, use_cache=False)[0] |
|
lprobs = torch.nn.functional.log_softmax(logits, dim=-1) |
|
loss, _ = self.loss_fn(lprobs, labels, self.args.label_smoothing, ignore_index=self.config.pad_token_id) |
|
return loss, logits |
|
|
|
def compute_loss(self, model, inputs): |
|
labels = inputs.pop("labels") |
|
loss, _ = self._compute_loss(model, inputs, labels) |
|
return loss |
|
|
|
def prediction_step( |
|
self, |
|
model: nn.Module, |
|
inputs: Dict[str, Union[torch.Tensor, Any]], |
|
prediction_loss_only: bool, |
|
ignore_keys: Optional[List[str]] = None, |
|
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: |
|
""" |
|
Perform an evaluation step on :obj:`model` using obj:`inputs`. |
|
|
|
Subclass and override to inject custom behavior. |
|
|
|
Args: |
|
model (:obj:`nn.Module`): |
|
The model to evaluate. |
|
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): |
|
The inputs and targets of the model. |
|
|
|
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the |
|
argument :obj:`labels`. Check your model's documentation for all accepted arguments. |
|
prediction_loss_only (:obj:`bool`): |
|
Whether or not to return the loss only. |
|
|
|
Return: |
|
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: |
|
A tuple with the loss, logits and labels (each being optional). |
|
""" |
|
inputs = self._prepare_inputs(inputs) |
|
|
|
gen_kwargs = { |
|
"max_length": self.data_args.val_max_target_length |
|
if self.data_args is not None |
|
else self.config.max_length, |
|
"num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, |
|
} |
|
|
|
if self.args.predict_with_generate and not self.args.prediction_loss_only: |
|
generated_tokens = self.model.generate( |
|
inputs["input_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
**gen_kwargs, |
|
) |
|
|
|
if generated_tokens.shape[-1] < gen_kwargs["max_length"]: |
|
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"]) |
|
|
|
labels = inputs.pop("labels") |
|
with torch.no_grad(): |
|
|
|
loss, logits = self._compute_loss(model, inputs, labels) |
|
|
|
loss = loss.mean().detach() |
|
if self.args.prediction_loss_only: |
|
return (loss, None, None) |
|
|
|
logits = generated_tokens if self.args.predict_with_generate else logits |
|
|
|
if labels.shape[-1] < gen_kwargs["max_length"]: |
|
labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"]) |
|
|
|
return (loss, logits, labels) |
|
|
|
def _pad_tensors_to_max_len(self, tensor, max_length): |
|
|
|
pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id |
|
|
|
if pad_token_id is None: |
|
raise ValueError( |
|
"Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" |
|
f" padded to `max_length`={max_length}" |
|
) |
|
|
|
padded_tensor = pad_token_id * torch.ones( |
|
(tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device |
|
) |
|
padded_tensor[:, : tensor.shape[-1]] = tensor |
|
return padded_tensor |
|
|