|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import fire |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
|
|
from transformers import AutoTokenizer |
|
from utils import Seq2SeqDataset, pickle_save |
|
|
|
|
|
def save_len_file( |
|
tokenizer_name, data_dir, max_source_length=1024, max_target_length=1024, consider_target=False, **kwargs |
|
): |
|
"""Save max(src_len, tgt_len) for each example to allow dynamic batching.""" |
|
tok = AutoTokenizer.from_pretrained(tokenizer_name) |
|
train_ds = Seq2SeqDataset(tok, data_dir, max_source_length, max_target_length, type_path="train", **kwargs) |
|
pad = tok.pad_token_id |
|
|
|
def get_lens(ds): |
|
dl = tqdm( |
|
DataLoader(ds, batch_size=512, num_workers=8, shuffle=False, collate_fn=ds.collate_fn), |
|
desc=str(ds.len_file), |
|
) |
|
max_lens = [] |
|
for batch in dl: |
|
src_lens = batch["input_ids"].ne(pad).sum(1).tolist() |
|
tgt_lens = batch["labels"].ne(pad).sum(1).tolist() |
|
if consider_target: |
|
for src, tgt in zip(src_lens, tgt_lens): |
|
max_lens.append(max(src, tgt)) |
|
else: |
|
max_lens.extend(src_lens) |
|
return max_lens |
|
|
|
train_lens = get_lens(train_ds) |
|
val_ds = Seq2SeqDataset(tok, data_dir, max_source_length, max_target_length, type_path="val", **kwargs) |
|
val_lens = get_lens(val_ds) |
|
pickle_save(train_lens, train_ds.len_file) |
|
pickle_save(val_lens, val_ds.len_file) |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(save_len_file) |
|
|