|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import pytest |
|
from pack_dataset import pack_data_dir |
|
from parameterized import parameterized |
|
from save_len_file import save_len_file |
|
from torch.utils.data import DataLoader |
|
|
|
from transformers import AutoTokenizer |
|
from transformers.models.mbart.modeling_mbart import shift_tokens_right |
|
from transformers.testing_utils import TestCasePlus, slow |
|
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeq2SeqDataset, Seq2SeqDataset |
|
|
|
|
|
BERT_BASE_CASED = "bert-base-cased" |
|
PEGASUS_XSUM = "google/pegasus-xsum" |
|
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."] |
|
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] |
|
T5_TINY = "patrickvonplaten/t5-tiny-random" |
|
BART_TINY = "sshleifer/bart-tiny-random" |
|
MBART_TINY = "sshleifer/tiny-mbart" |
|
MARIAN_TINY = "sshleifer/tiny-marian-en-de" |
|
|
|
|
|
def _dump_articles(path: Path, articles: list): |
|
content = "\n".join(articles) |
|
Path(path).open("w").writelines(content) |
|
|
|
|
|
def make_test_data_dir(tmp_dir): |
|
for split in ["train", "val", "test"]: |
|
_dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES) |
|
_dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES) |
|
return tmp_dir |
|
|
|
|
|
class TestAll(TestCasePlus): |
|
@parameterized.expand( |
|
[ |
|
MBART_TINY, |
|
MARIAN_TINY, |
|
T5_TINY, |
|
BART_TINY, |
|
PEGASUS_XSUM, |
|
], |
|
) |
|
@slow |
|
def test_seq2seq_dataset_truncation(self, tok_name): |
|
tokenizer = AutoTokenizer.from_pretrained(tok_name) |
|
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) |
|
max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES) |
|
max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES) |
|
max_src_len = 4 |
|
max_tgt_len = 8 |
|
assert max_len_target > max_src_len |
|
assert max_len_source > max_src_len |
|
src_lang, tgt_lang = "ro_RO", "de_DE" |
|
train_dataset = Seq2SeqDataset( |
|
tokenizer, |
|
data_dir=tmp_dir, |
|
type_path="train", |
|
max_source_length=max_src_len, |
|
max_target_length=max_tgt_len, |
|
src_lang=src_lang, |
|
tgt_lang=tgt_lang, |
|
) |
|
dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn) |
|
for batch in dataloader: |
|
assert isinstance(batch, dict) |
|
assert batch["attention_mask"].shape == batch["input_ids"].shape |
|
|
|
assert batch["input_ids"].shape[1] == max_src_len |
|
|
|
assert batch["labels"].shape[1] == max_tgt_len |
|
if tok_name != MBART_TINY: |
|
continue |
|
|
|
batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], tokenizer.pad_token_id) |
|
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] |
|
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id |
|
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id |
|
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] |
|
|
|
break |
|
|
|
@parameterized.expand([BART_TINY, BERT_BASE_CASED]) |
|
def test_legacy_dataset_truncation(self, tok): |
|
tokenizer = AutoTokenizer.from_pretrained(tok) |
|
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) |
|
max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES) |
|
max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES) |
|
trunc_target = 4 |
|
train_dataset = LegacySeq2SeqDataset( |
|
tokenizer, |
|
data_dir=tmp_dir, |
|
type_path="train", |
|
max_source_length=20, |
|
max_target_length=trunc_target, |
|
) |
|
dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn) |
|
for batch in dataloader: |
|
assert batch["attention_mask"].shape == batch["input_ids"].shape |
|
|
|
assert batch["input_ids"].shape[1] == max_len_source |
|
assert 20 >= batch["input_ids"].shape[1] |
|
|
|
assert batch["labels"].shape[1] == trunc_target |
|
assert max_len_target > trunc_target |
|
break |
|
|
|
def test_pack_dataset(self): |
|
tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") |
|
|
|
tmp_dir = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) |
|
orig_examples = tmp_dir.joinpath("train.source").open().readlines() |
|
save_dir = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) |
|
pack_data_dir(tokenizer, tmp_dir, 128, save_dir) |
|
orig_paths = {x.name for x in tmp_dir.iterdir()} |
|
new_paths = {x.name for x in save_dir.iterdir()} |
|
packed_examples = save_dir.joinpath("train.source").open().readlines() |
|
|
|
|
|
assert len(packed_examples) < len(orig_examples) |
|
assert len(packed_examples) == 1 |
|
assert len(packed_examples[0]) == sum(len(x) for x in orig_examples) |
|
assert orig_paths == new_paths |
|
|
|
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE, reason="This test requires fairseq") |
|
def test_dynamic_batch_size(self): |
|
if not FAIRSEQ_AVAILABLE: |
|
return |
|
ds, max_tokens, tokenizer = self._get_dataset(max_len=64) |
|
required_batch_size_multiple = 64 |
|
batch_sampler = ds.make_dynamic_sampler(max_tokens, required_batch_size_multiple=required_batch_size_multiple) |
|
batch_sizes = [len(x) for x in batch_sampler] |
|
assert len(set(batch_sizes)) > 1 |
|
assert sum(batch_sizes) == len(ds) |
|
data_loader = DataLoader(ds, batch_sampler=batch_sampler, collate_fn=ds.collate_fn, num_workers=2) |
|
failures = [] |
|
num_src_per_batch = [] |
|
for batch in data_loader: |
|
src_shape = batch["input_ids"].shape |
|
bs = src_shape[0] |
|
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple |
|
num_src_tokens = np.product(batch["input_ids"].shape) |
|
num_src_per_batch.append(num_src_tokens) |
|
if num_src_tokens > (max_tokens * 1.1): |
|
failures.append(num_src_tokens) |
|
assert num_src_per_batch[0] == max(num_src_per_batch) |
|
if failures: |
|
raise AssertionError(f"too many tokens in {len(failures)} batches") |
|
|
|
def test_sortish_sampler_reduces_padding(self): |
|
ds, _, tokenizer = self._get_dataset(max_len=512) |
|
bs = 2 |
|
sortish_sampler = ds.make_sortish_sampler(bs, shuffle=False) |
|
|
|
naive_dl = DataLoader(ds, batch_size=bs, collate_fn=ds.collate_fn, num_workers=2) |
|
sortish_dl = DataLoader(ds, batch_size=bs, collate_fn=ds.collate_fn, num_workers=2, sampler=sortish_sampler) |
|
|
|
pad = tokenizer.pad_token_id |
|
|
|
def count_pad_tokens(data_loader, k="input_ids"): |
|
return [batch[k].eq(pad).sum().item() for batch in data_loader] |
|
|
|
assert sum(count_pad_tokens(sortish_dl, k="labels")) < sum(count_pad_tokens(naive_dl, k="labels")) |
|
assert sum(count_pad_tokens(sortish_dl)) < sum(count_pad_tokens(naive_dl)) |
|
assert len(sortish_dl) == len(naive_dl) |
|
|
|
def _get_dataset(self, n_obs=1000, max_len=128): |
|
if os.getenv("USE_REAL_DATA", False): |
|
data_dir = "examples/seq2seq/wmt_en_ro" |
|
max_tokens = max_len * 2 * 64 |
|
if not Path(data_dir).joinpath("train.len").exists(): |
|
save_len_file(MARIAN_TINY, data_dir) |
|
else: |
|
data_dir = "examples/seq2seq/test_data/wmt_en_ro" |
|
max_tokens = max_len * 4 |
|
save_len_file(MARIAN_TINY, data_dir) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MARIAN_TINY) |
|
ds = Seq2SeqDataset( |
|
tokenizer, |
|
data_dir=data_dir, |
|
type_path="train", |
|
max_source_length=max_len, |
|
max_target_length=max_len, |
|
n_obs=n_obs, |
|
) |
|
return ds, max_tokens, tokenizer |
|
|
|
def test_distributed_sortish_sampler_splits_indices_between_procs(self): |
|
ds, max_tokens, tokenizer = self._get_dataset() |
|
ids1 = set(DistributedSortishSampler(ds, 256, num_replicas=2, rank=0, add_extra_examples=False)) |
|
ids2 = set(DistributedSortishSampler(ds, 256, num_replicas=2, rank=1, add_extra_examples=False)) |
|
assert ids1.intersection(ids2) == set() |
|
|
|
@parameterized.expand( |
|
[ |
|
MBART_TINY, |
|
MARIAN_TINY, |
|
T5_TINY, |
|
BART_TINY, |
|
PEGASUS_XSUM, |
|
], |
|
) |
|
def test_dataset_kwargs(self, tok_name): |
|
tokenizer = AutoTokenizer.from_pretrained(tok_name, use_fast=False) |
|
if tok_name == MBART_TINY: |
|
train_dataset = Seq2SeqDataset( |
|
tokenizer, |
|
data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()), |
|
type_path="train", |
|
max_source_length=4, |
|
max_target_length=8, |
|
src_lang="EN", |
|
tgt_lang="FR", |
|
) |
|
kwargs = train_dataset.dataset_kwargs |
|
assert "src_lang" in kwargs and "tgt_lang" in kwargs |
|
else: |
|
train_dataset = Seq2SeqDataset( |
|
tokenizer, |
|
data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()), |
|
type_path="train", |
|
max_source_length=4, |
|
max_target_length=8, |
|
) |
|
kwargs = train_dataset.dataset_kwargs |
|
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs |
|
assert len(kwargs) == 1 if tok_name == BART_TINY else len(kwargs) == 0 |
|
|