|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""BERT finetuning runner. |
|
Finetuning the library models for multiple choice on SWAG (Bert). |
|
""" |
|
|
|
|
|
import argparse |
|
import csv |
|
import glob |
|
import logging |
|
import os |
|
import random |
|
|
|
import numpy as np |
|
import torch |
|
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset |
|
from torch.utils.data.distributed import DistributedSampler |
|
from tqdm import tqdm, trange |
|
|
|
import transformers |
|
from transformers import ( |
|
WEIGHTS_NAME, |
|
AdamW, |
|
AutoConfig, |
|
AutoModelForMultipleChoice, |
|
AutoTokenizer, |
|
get_linear_schedule_with_warmup, |
|
) |
|
from transformers.trainer_utils import is_main_process |
|
|
|
|
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
except ImportError: |
|
from tensorboardX import SummaryWriter |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class SwagExample(object): |
|
"""A single training/test example for the SWAG dataset.""" |
|
|
|
def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label=None): |
|
self.swag_id = swag_id |
|
self.context_sentence = context_sentence |
|
self.start_ending = start_ending |
|
self.endings = [ |
|
ending_0, |
|
ending_1, |
|
ending_2, |
|
ending_3, |
|
] |
|
self.label = label |
|
|
|
def __str__(self): |
|
return self.__repr__() |
|
|
|
def __repr__(self): |
|
attributes = [ |
|
"swag_id: {}".format(self.swag_id), |
|
"context_sentence: {}".format(self.context_sentence), |
|
"start_ending: {}".format(self.start_ending), |
|
"ending_0: {}".format(self.endings[0]), |
|
"ending_1: {}".format(self.endings[1]), |
|
"ending_2: {}".format(self.endings[2]), |
|
"ending_3: {}".format(self.endings[3]), |
|
] |
|
|
|
if self.label is not None: |
|
attributes.append("label: {}".format(self.label)) |
|
|
|
return ", ".join(attributes) |
|
|
|
|
|
class InputFeatures(object): |
|
def __init__(self, example_id, choices_features, label): |
|
self.example_id = example_id |
|
self.choices_features = [ |
|
{"input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids} |
|
for _, input_ids, input_mask, segment_ids in choices_features |
|
] |
|
self.label = label |
|
|
|
|
|
def read_swag_examples(input_file, is_training=True): |
|
with open(input_file, "r", encoding="utf-8") as f: |
|
lines = list(csv.reader(f)) |
|
|
|
if is_training and lines[0][-1] != "label": |
|
raise ValueError("For training, the input file must contain a label column.") |
|
|
|
examples = [ |
|
SwagExample( |
|
swag_id=line[2], |
|
context_sentence=line[4], |
|
start_ending=line[5], |
|
|
|
|
|
ending_0=line[7], |
|
ending_1=line[8], |
|
ending_2=line[9], |
|
ending_3=line[10], |
|
label=int(line[11]) if is_training else None, |
|
) |
|
for line in lines[1:] |
|
] |
|
|
|
return examples |
|
|
|
|
|
def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training): |
|
"""Loads a data file into a list of `InputBatch`s.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
features = [] |
|
for example_index, example in tqdm(enumerate(examples)): |
|
context_tokens = tokenizer.tokenize(example.context_sentence) |
|
start_ending_tokens = tokenizer.tokenize(example.start_ending) |
|
|
|
choices_features = [] |
|
for ending_index, ending in enumerate(example.endings): |
|
|
|
|
|
context_tokens_choice = context_tokens[:] |
|
ending_tokens = start_ending_tokens + tokenizer.tokenize(ending) |
|
|
|
|
|
|
|
|
|
_truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3) |
|
|
|
tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"] |
|
segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1) |
|
|
|
input_ids = tokenizer.convert_tokens_to_ids(tokens) |
|
input_mask = [1] * len(input_ids) |
|
|
|
|
|
padding = [0] * (max_seq_length - len(input_ids)) |
|
input_ids += padding |
|
input_mask += padding |
|
segment_ids += padding |
|
|
|
assert len(input_ids) == max_seq_length |
|
assert len(input_mask) == max_seq_length |
|
assert len(segment_ids) == max_seq_length |
|
|
|
choices_features.append((tokens, input_ids, input_mask, segment_ids)) |
|
|
|
label = example.label |
|
if example_index < 5: |
|
logger.info("*** Example ***") |
|
logger.info("swag_id: {}".format(example.swag_id)) |
|
for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features): |
|
logger.info("choice: {}".format(choice_idx)) |
|
logger.info("tokens: {}".format(" ".join(tokens))) |
|
logger.info("input_ids: {}".format(" ".join(map(str, input_ids)))) |
|
logger.info("input_mask: {}".format(" ".join(map(str, input_mask)))) |
|
logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids)))) |
|
if is_training: |
|
logger.info("label: {}".format(label)) |
|
|
|
features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label)) |
|
|
|
return features |
|
|
|
|
|
def _truncate_seq_pair(tokens_a, tokens_b, max_length): |
|
"""Truncates a sequence pair in place to the maximum length.""" |
|
|
|
|
|
|
|
|
|
|
|
while True: |
|
total_length = len(tokens_a) + len(tokens_b) |
|
if total_length <= max_length: |
|
break |
|
if len(tokens_a) > len(tokens_b): |
|
tokens_a.pop() |
|
else: |
|
tokens_b.pop() |
|
|
|
|
|
def accuracy(out, labels): |
|
outputs = np.argmax(out, axis=1) |
|
return np.sum(outputs == labels) |
|
|
|
|
|
def select_field(features, field): |
|
return [[choice[field] for choice in feature.choices_features] for feature in features] |
|
|
|
|
|
def set_seed(args): |
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
if args.n_gpu > 0: |
|
torch.cuda.manual_seed_all(args.seed) |
|
|
|
|
|
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False): |
|
if args.local_rank not in [-1, 0]: |
|
torch.distributed.barrier() |
|
|
|
|
|
input_file = args.predict_file if evaluate else args.train_file |
|
cached_features_file = os.path.join( |
|
os.path.dirname(input_file), |
|
"cached_{}_{}_{}".format( |
|
"dev" if evaluate else "train", |
|
list(filter(None, args.model_name_or_path.split("/"))).pop(), |
|
str(args.max_seq_length), |
|
), |
|
) |
|
if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples: |
|
logger.info("Loading features from cached file %s", cached_features_file) |
|
features = torch.load(cached_features_file) |
|
else: |
|
logger.info("Creating features from dataset file at %s", input_file) |
|
examples = read_swag_examples(input_file) |
|
features = convert_examples_to_features(examples, tokenizer, args.max_seq_length, not evaluate) |
|
|
|
if args.local_rank in [-1, 0]: |
|
logger.info("Saving features into cached file %s", cached_features_file) |
|
torch.save(features, cached_features_file) |
|
|
|
if args.local_rank == 0: |
|
torch.distributed.barrier() |
|
|
|
|
|
all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long) |
|
all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long) |
|
all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long) |
|
all_label = torch.tensor([f.label for f in features], dtype=torch.long) |
|
|
|
if evaluate: |
|
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) |
|
else: |
|
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) |
|
|
|
if output_examples: |
|
return dataset, examples, features |
|
return dataset |
|
|
|
|
|
def train(args, train_dataset, model, tokenizer): |
|
"""Train the model""" |
|
if args.local_rank in [-1, 0]: |
|
tb_writer = SummaryWriter() |
|
|
|
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) |
|
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) |
|
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) |
|
|
|
if args.max_steps > 0: |
|
t_total = args.max_steps |
|
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 |
|
else: |
|
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs |
|
|
|
|
|
no_decay = ["bias", "LayerNorm.weight"] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
"weight_decay": args.weight_decay, |
|
}, |
|
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, |
|
] |
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) |
|
scheduler = get_linear_schedule_with_warmup( |
|
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total |
|
) |
|
if args.fp16: |
|
try: |
|
from apex import amp |
|
except ImportError: |
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") |
|
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) |
|
|
|
|
|
if args.n_gpu > 1: |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
if args.local_rank != -1: |
|
model = torch.nn.parallel.DistributedDataParallel( |
|
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True |
|
) |
|
|
|
|
|
logger.info("***** Running training *****") |
|
logger.info(" Num examples = %d", len(train_dataset)) |
|
logger.info(" Num Epochs = %d", args.num_train_epochs) |
|
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) |
|
logger.info( |
|
" Total train batch size (w. parallel, distributed & accumulation) = %d", |
|
args.train_batch_size |
|
* args.gradient_accumulation_steps |
|
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1), |
|
) |
|
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) |
|
logger.info(" Total optimization steps = %d", t_total) |
|
|
|
global_step = 0 |
|
tr_loss, logging_loss = 0.0, 0.0 |
|
model.zero_grad() |
|
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) |
|
set_seed(args) |
|
for _ in train_iterator: |
|
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) |
|
for step, batch in enumerate(epoch_iterator): |
|
model.train() |
|
batch = tuple(t.to(args.device) for t in batch) |
|
inputs = { |
|
"input_ids": batch[0], |
|
"attention_mask": batch[1], |
|
|
|
"token_type_ids": batch[2], |
|
"labels": batch[3], |
|
} |
|
|
|
|
|
|
|
outputs = model(**inputs) |
|
loss = outputs[0] |
|
|
|
if args.n_gpu > 1: |
|
loss = loss.mean() |
|
if args.gradient_accumulation_steps > 1: |
|
loss = loss / args.gradient_accumulation_steps |
|
|
|
if args.fp16: |
|
with amp.scale_loss(loss, optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) |
|
else: |
|
loss.backward() |
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) |
|
|
|
tr_loss += loss.item() |
|
if (step + 1) % args.gradient_accumulation_steps == 0: |
|
optimizer.step() |
|
scheduler.step() |
|
model.zero_grad() |
|
global_step += 1 |
|
|
|
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: |
|
|
|
if ( |
|
args.local_rank == -1 and args.evaluate_during_training |
|
): |
|
results = evaluate(args, model, tokenizer) |
|
for key, value in results.items(): |
|
tb_writer.add_scalar("eval_{}".format(key), value, global_step) |
|
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) |
|
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) |
|
logging_loss = tr_loss |
|
|
|
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: |
|
|
|
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) |
|
model_to_save = ( |
|
model.module if hasattr(model, "module") else model |
|
) |
|
model_to_save.save_pretrained(output_dir) |
|
tokenizer.save_vocabulary(output_dir) |
|
torch.save(args, os.path.join(output_dir, "training_args.bin")) |
|
logger.info("Saving model checkpoint to %s", output_dir) |
|
|
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
epoch_iterator.close() |
|
break |
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
train_iterator.close() |
|
break |
|
|
|
if args.local_rank in [-1, 0]: |
|
tb_writer.close() |
|
|
|
return global_step, tr_loss / global_step |
|
|
|
|
|
def evaluate(args, model, tokenizer, prefix=""): |
|
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True) |
|
|
|
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: |
|
os.makedirs(args.output_dir) |
|
|
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) |
|
|
|
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset) |
|
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) |
|
|
|
|
|
logger.info("***** Running evaluation {} *****".format(prefix)) |
|
logger.info(" Num examples = %d", len(dataset)) |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
|
|
eval_loss, eval_accuracy = 0, 0 |
|
nb_eval_steps, nb_eval_examples = 0, 0 |
|
|
|
for batch in tqdm(eval_dataloader, desc="Evaluating"): |
|
model.eval() |
|
batch = tuple(t.to(args.device) for t in batch) |
|
with torch.no_grad(): |
|
inputs = { |
|
"input_ids": batch[0], |
|
"attention_mask": batch[1], |
|
|
|
"token_type_ids": batch[2], |
|
"labels": batch[3], |
|
} |
|
|
|
|
|
|
|
|
|
outputs = model(**inputs) |
|
tmp_eval_loss, logits = outputs[:2] |
|
eval_loss += tmp_eval_loss.mean().item() |
|
|
|
logits = logits.detach().cpu().numpy() |
|
label_ids = inputs["labels"].to("cpu").numpy() |
|
tmp_eval_accuracy = accuracy(logits, label_ids) |
|
eval_accuracy += tmp_eval_accuracy |
|
|
|
nb_eval_steps += 1 |
|
nb_eval_examples += inputs["input_ids"].size(0) |
|
|
|
eval_loss = eval_loss / nb_eval_steps |
|
eval_accuracy = eval_accuracy / nb_eval_examples |
|
result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy} |
|
|
|
output_eval_file = os.path.join(args.output_dir, "eval_results.txt") |
|
with open(output_eval_file, "w") as writer: |
|
logger.info("***** Eval results *****") |
|
for key in sorted(result.keys()): |
|
logger.info("%s = %s", key, str(result[key])) |
|
writer.write("%s = %s\n" % (key, str(result[key]))) |
|
|
|
return result |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument( |
|
"--train_file", default=None, type=str, required=True, help="SWAG csv for training. E.g., train.csv" |
|
) |
|
parser.add_argument( |
|
"--predict_file", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="SWAG csv for predictions. E.g., val.csv or test.csv", |
|
) |
|
parser.add_argument( |
|
"--model_name_or_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models", |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The output directory where the model checkpoints and predictions will be written.", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
default="", |
|
type=str, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--max_seq_length", |
|
default=384, |
|
type=int, |
|
help=( |
|
"The maximum total input sequence length after tokenization. Sequences " |
|
"longer than this will be truncated, and sequences shorter than this will be padded." |
|
), |
|
) |
|
parser.add_argument("--do_train", action="store_true", help="Whether to run training.") |
|
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") |
|
parser.add_argument( |
|
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." |
|
) |
|
|
|
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") |
|
parser.add_argument( |
|
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." |
|
) |
|
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") |
|
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument( |
|
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." |
|
) |
|
parser.add_argument( |
|
"--max_steps", |
|
default=-1, |
|
type=int, |
|
help="If > 0: set total number of training steps to perform. Override num_train_epochs.", |
|
) |
|
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") |
|
|
|
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") |
|
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") |
|
parser.add_argument( |
|
"--eval_all_checkpoints", |
|
action="store_true", |
|
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", |
|
) |
|
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") |
|
parser.add_argument( |
|
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" |
|
) |
|
parser.add_argument( |
|
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" |
|
) |
|
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") |
|
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") |
|
parser.add_argument( |
|
"--fp16", |
|
action="store_true", |
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", |
|
) |
|
parser.add_argument( |
|
"--fp16_opt_level", |
|
type=str, |
|
default="O1", |
|
help=( |
|
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." |
|
"See details at https://nvidia.github.io/apex/amp.html" |
|
), |
|
) |
|
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") |
|
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") |
|
args = parser.parse_args() |
|
|
|
if ( |
|
os.path.exists(args.output_dir) |
|
and os.listdir(args.output_dir) |
|
and args.do_train |
|
and not args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( |
|
args.output_dir |
|
) |
|
) |
|
|
|
|
|
if args.server_ip and args.server_port: |
|
|
|
import ptvsd |
|
|
|
print("Waiting for debugger attach") |
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) |
|
ptvsd.wait_for_attach() |
|
|
|
|
|
if args.local_rank == -1 or args.no_cuda: |
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
|
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() |
|
else: |
|
torch.cuda.set_device(args.local_rank) |
|
device = torch.device("cuda", args.local_rank) |
|
torch.distributed.init_process_group(backend="nccl") |
|
args.n_gpu = 1 |
|
args.device = device |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, |
|
) |
|
logger.warning( |
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", |
|
args.local_rank, |
|
device, |
|
args.n_gpu, |
|
bool(args.local_rank != -1), |
|
args.fp16, |
|
) |
|
|
|
if is_main_process(args.local_rank): |
|
transformers.utils.logging.set_verbosity_info() |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
set_seed(args) |
|
|
|
|
|
if args.local_rank not in [-1, 0]: |
|
torch.distributed.barrier() |
|
|
|
config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, |
|
) |
|
model = AutoModelForMultipleChoice.from_pretrained( |
|
args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config |
|
) |
|
|
|
if args.local_rank == 0: |
|
torch.distributed.barrier() |
|
|
|
model.to(args.device) |
|
|
|
logger.info("Training/evaluation parameters %s", args) |
|
|
|
|
|
if args.do_train: |
|
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False) |
|
global_step, tr_loss = train(args, train_dataset, model, tokenizer) |
|
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) |
|
|
|
|
|
if args.local_rank == -1 or torch.distributed.get_rank() == 0: |
|
logger.info("Saving model checkpoint to %s", args.output_dir) |
|
|
|
|
|
model_to_save = ( |
|
model.module if hasattr(model, "module") else model |
|
) |
|
model_to_save.save_pretrained(args.output_dir) |
|
tokenizer.save_pretrained(args.output_dir) |
|
|
|
|
|
torch.save(args, os.path.join(args.output_dir, "training_args.bin")) |
|
|
|
|
|
model = AutoModelForMultipleChoice.from_pretrained(args.output_dir) |
|
tokenizer = AutoTokenizer.from_pretrained(args.output_dir) |
|
model.to(args.device) |
|
|
|
|
|
results = {} |
|
if args.do_eval and args.local_rank in [-1, 0]: |
|
if args.do_train: |
|
checkpoints = [args.output_dir] |
|
else: |
|
|
|
checkpoints = [args.model_name_or_path] |
|
|
|
if args.eval_all_checkpoints: |
|
checkpoints = [ |
|
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) |
|
] |
|
|
|
logger.info("Evaluate the following checkpoints: %s", checkpoints) |
|
|
|
for checkpoint in checkpoints: |
|
|
|
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" |
|
model = AutoModelForMultipleChoice.from_pretrained(checkpoint) |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
model.to(args.device) |
|
|
|
|
|
result = evaluate(args, model, tokenizer, prefix=global_step) |
|
|
|
result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()} |
|
results.update(result) |
|
|
|
logger.info("Results: {}".format(results)) |
|
|
|
return results |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|