|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Pre-training/Fine-tuning ViT for image classification . |
|
|
|
Here is the full list of checkpoints on the hub that can be fine-tuned by this script: |
|
https://huggingface.co/models?filter=vit |
|
""" |
|
|
|
import logging |
|
import os |
|
import sys |
|
import time |
|
from dataclasses import asdict, dataclass, field |
|
from enum import Enum |
|
from pathlib import Path |
|
from typing import Callable, Optional |
|
|
|
import jax |
|
import jax.numpy as jnp |
|
import optax |
|
|
|
|
|
import torch |
|
import torchvision |
|
import torchvision.transforms as transforms |
|
from flax import jax_utils |
|
from flax.jax_utils import pad_shard_unpad, unreplicate |
|
from flax.training import train_state |
|
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key |
|
from huggingface_hub import Repository, create_repo |
|
from tqdm import tqdm |
|
|
|
import transformers |
|
from transformers import ( |
|
CONFIG_MAPPING, |
|
FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, |
|
AutoConfig, |
|
FlaxAutoModelForImageClassification, |
|
HfArgumentParser, |
|
is_tensorboard_available, |
|
set_seed, |
|
) |
|
from transformers.utils import get_full_repo_name, send_example_telemetry |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) |
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
|
|
|
|
|
@dataclass |
|
class TrainingArguments: |
|
output_dir: str = field( |
|
metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, |
|
) |
|
overwrite_output_dir: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Overwrite the content of the output directory. " |
|
"Use this to continue training if output_dir points to a checkpoint directory." |
|
) |
|
}, |
|
) |
|
do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) |
|
do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) |
|
per_device_train_batch_size: int = field( |
|
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} |
|
) |
|
per_device_eval_batch_size: int = field( |
|
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} |
|
) |
|
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) |
|
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) |
|
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) |
|
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) |
|
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) |
|
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) |
|
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) |
|
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) |
|
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) |
|
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) |
|
eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) |
|
seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) |
|
push_to_hub: bool = field( |
|
default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} |
|
) |
|
hub_model_id: str = field( |
|
default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} |
|
) |
|
hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) |
|
|
|
def __post_init__(self): |
|
if self.output_dir is not None: |
|
self.output_dir = os.path.expanduser(self.output_dir) |
|
|
|
def to_dict(self): |
|
""" |
|
Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates |
|
the token values by removing their value. |
|
""" |
|
d = asdict(self) |
|
for k, v in d.items(): |
|
if isinstance(v, Enum): |
|
d[k] = v.value |
|
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): |
|
d[k] = [x.value for x in v] |
|
if k.endswith("_token"): |
|
d[k] = f"<{k.upper()}>" |
|
return d |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
model_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." |
|
) |
|
}, |
|
) |
|
model_type: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": ( |
|
"Floating-point format in which the model weights should be initialized and trained. Choose one of" |
|
" `[float32, float16, bfloat16]`." |
|
) |
|
}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
train_dir: str = field( |
|
metadata={"help": "Path to the root training directory which contains one subdirectory per class."} |
|
) |
|
validation_dir: str = field( |
|
metadata={"help": "Path to the root validation directory which contains one subdirectory per class."}, |
|
) |
|
image_size: Optional[int] = field(default=224, metadata={"help": " The size (resolution) of each image."}) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
|
|
|
|
class TrainState(train_state.TrainState): |
|
dropout_rng: jnp.ndarray |
|
|
|
def replicate(self): |
|
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) |
|
|
|
|
|
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step): |
|
summary_writer.scalar("train_time", train_time, step) |
|
|
|
train_metrics = get_metrics(train_metrics) |
|
for key, vals in train_metrics.items(): |
|
tag = f"train_{key}" |
|
for i, val in enumerate(vals): |
|
summary_writer.scalar(tag, val, step - len(vals) + i + 1) |
|
|
|
for metric_name, value in eval_metrics.items(): |
|
summary_writer.scalar(f"eval_{metric_name}", value, step) |
|
|
|
|
|
def create_learning_rate_fn( |
|
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float |
|
) -> Callable[[int], jnp.array]: |
|
"""Returns a linear warmup, linear_decay learning rate function.""" |
|
steps_per_epoch = train_ds_size // train_batch_size |
|
num_train_steps = steps_per_epoch * num_train_epochs |
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) |
|
decay_fn = optax.linear_schedule( |
|
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps |
|
) |
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) |
|
return schedule_fn |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_image_classification", model_args, data_args, framework="flax") |
|
|
|
if ( |
|
os.path.exists(training_args.output_dir) |
|
and os.listdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty." |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
|
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
if training_args.push_to_hub: |
|
if training_args.hub_model_id is None: |
|
repo_name = get_full_repo_name( |
|
Path(training_args.output_dir).absolute().name, token=training_args.hub_token |
|
) |
|
else: |
|
repo_name = training_args.hub_model_id |
|
create_repo(repo_name, exist_ok=True, token=training_args.hub_token) |
|
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token) |
|
|
|
|
|
|
|
|
|
|
|
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
train_dataset = torchvision.datasets.ImageFolder( |
|
data_args.train_dir, |
|
transforms.Compose( |
|
[ |
|
transforms.RandomResizedCrop(data_args.image_size), |
|
transforms.RandomHorizontalFlip(), |
|
transforms.ToTensor(), |
|
normalize, |
|
] |
|
), |
|
) |
|
|
|
eval_dataset = torchvision.datasets.ImageFolder( |
|
data_args.validation_dir, |
|
transforms.Compose( |
|
[ |
|
transforms.Resize(data_args.image_size), |
|
transforms.CenterCrop(data_args.image_size), |
|
transforms.ToTensor(), |
|
normalize, |
|
] |
|
), |
|
) |
|
|
|
|
|
if model_args.config_name: |
|
config = AutoConfig.from_pretrained( |
|
model_args.config_name, |
|
num_labels=len(train_dataset.classes), |
|
image_size=data_args.image_size, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
elif model_args.model_name_or_path: |
|
config = AutoConfig.from_pretrained( |
|
model_args.model_name_or_path, |
|
num_labels=len(train_dataset.classes), |
|
image_size=data_args.image_size, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
else: |
|
config = CONFIG_MAPPING[model_args.model_type]() |
|
logger.warning("You are instantiating a new config instance from scratch.") |
|
|
|
if model_args.model_name_or_path: |
|
model = FlaxAutoModelForImageClassification.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
seed=training_args.seed, |
|
dtype=getattr(jnp, model_args.dtype), |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
else: |
|
model = FlaxAutoModelForImageClassification.from_config( |
|
config, |
|
seed=training_args.seed, |
|
dtype=getattr(jnp, model_args.dtype), |
|
) |
|
|
|
|
|
num_epochs = int(training_args.num_train_epochs) |
|
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() |
|
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) |
|
eval_batch_size = per_device_eval_batch_size * jax.device_count() |
|
steps_per_epoch = len(train_dataset) // train_batch_size |
|
total_train_steps = steps_per_epoch * num_epochs |
|
|
|
def collate_fn(examples): |
|
pixel_values = torch.stack([example[0] for example in examples]) |
|
labels = torch.tensor([example[1] for example in examples]) |
|
|
|
batch = {"pixel_values": pixel_values, "labels": labels} |
|
batch = {k: v.numpy() for k, v in batch.items()} |
|
|
|
return batch |
|
|
|
|
|
train_loader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_size=train_batch_size, |
|
shuffle=True, |
|
num_workers=data_args.preprocessing_num_workers, |
|
persistent_workers=True, |
|
drop_last=True, |
|
collate_fn=collate_fn, |
|
) |
|
|
|
eval_loader = torch.utils.data.DataLoader( |
|
eval_dataset, |
|
batch_size=eval_batch_size, |
|
shuffle=False, |
|
num_workers=data_args.preprocessing_num_workers, |
|
persistent_workers=True, |
|
drop_last=False, |
|
collate_fn=collate_fn, |
|
) |
|
|
|
|
|
has_tensorboard = is_tensorboard_available() |
|
if has_tensorboard and jax.process_index() == 0: |
|
try: |
|
from flax.metrics.tensorboard import SummaryWriter |
|
|
|
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) |
|
except ImportError as ie: |
|
has_tensorboard = False |
|
logger.warning( |
|
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" |
|
) |
|
else: |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because the package is not installed: " |
|
"Please run pip install tensorboard to enable." |
|
) |
|
|
|
|
|
rng = jax.random.PRNGKey(training_args.seed) |
|
rng, dropout_rng = jax.random.split(rng) |
|
|
|
|
|
linear_decay_lr_schedule_fn = create_learning_rate_fn( |
|
len(train_dataset), |
|
train_batch_size, |
|
training_args.num_train_epochs, |
|
training_args.warmup_steps, |
|
training_args.learning_rate, |
|
) |
|
|
|
|
|
adamw = optax.adamw( |
|
learning_rate=linear_decay_lr_schedule_fn, |
|
b1=training_args.adam_beta1, |
|
b2=training_args.adam_beta2, |
|
eps=training_args.adam_epsilon, |
|
weight_decay=training_args.weight_decay, |
|
) |
|
|
|
|
|
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng) |
|
|
|
def loss_fn(logits, labels): |
|
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) |
|
return loss.mean() |
|
|
|
|
|
def train_step(state, batch): |
|
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) |
|
|
|
def compute_loss(params): |
|
labels = batch.pop("labels") |
|
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] |
|
loss = loss_fn(logits, labels) |
|
return loss |
|
|
|
grad_fn = jax.value_and_grad(compute_loss) |
|
loss, grad = grad_fn(state.params) |
|
grad = jax.lax.pmean(grad, "batch") |
|
|
|
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) |
|
|
|
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} |
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
|
|
return new_state, metrics |
|
|
|
|
|
def eval_step(params, batch): |
|
labels = batch.pop("labels") |
|
logits = model(**batch, params=params, train=False)[0] |
|
loss = loss_fn(logits, labels) |
|
|
|
|
|
accuracy = (jnp.argmax(logits, axis=-1) == labels).mean() |
|
metrics = {"loss": loss, "accuracy": accuracy} |
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
return metrics |
|
|
|
|
|
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) |
|
p_eval_step = jax.pmap(eval_step, "batch") |
|
|
|
|
|
state = state.replicate() |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {num_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") |
|
logger.info(f" Total optimization steps = {total_train_steps}") |
|
|
|
train_time = 0 |
|
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) |
|
for epoch in epochs: |
|
|
|
train_start = time.time() |
|
|
|
|
|
rng, input_rng = jax.random.split(rng) |
|
train_metrics = [] |
|
|
|
steps_per_epoch = len(train_dataset) // train_batch_size |
|
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False) |
|
|
|
for batch in train_loader: |
|
batch = shard(batch) |
|
state, train_metric = p_train_step(state, batch) |
|
train_metrics.append(train_metric) |
|
|
|
train_step_progress_bar.update(1) |
|
|
|
train_time += time.time() - train_start |
|
|
|
train_metric = unreplicate(train_metric) |
|
|
|
train_step_progress_bar.close() |
|
epochs.write( |
|
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate:" |
|
f" {train_metric['learning_rate']})" |
|
) |
|
|
|
|
|
eval_metrics = [] |
|
eval_steps = len(eval_dataset) // eval_batch_size |
|
eval_step_progress_bar = tqdm(total=eval_steps, desc="Evaluating...", position=2, leave=False) |
|
for batch in eval_loader: |
|
|
|
metrics = pad_shard_unpad(p_eval_step, static_return=True)( |
|
state.params, batch, min_device_batch=per_device_eval_batch_size |
|
) |
|
eval_metrics.append(metrics) |
|
|
|
eval_step_progress_bar.update(1) |
|
|
|
|
|
eval_metrics = get_metrics(eval_metrics) |
|
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) |
|
|
|
|
|
eval_step_progress_bar.close() |
|
desc = ( |
|
f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {round(eval_metrics['loss'].item(), 4)} | " |
|
f"Eval Accuracy: {round(eval_metrics['accuracy'].item(), 4)})" |
|
) |
|
epochs.write(desc) |
|
epochs.desc = desc |
|
|
|
|
|
if has_tensorboard and jax.process_index() == 0: |
|
cur_step = epoch * (len(train_dataset) // train_batch_size) |
|
write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step) |
|
|
|
|
|
if jax.process_index() == 0: |
|
params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) |
|
model.save_pretrained(training_args.output_dir, params=params) |
|
if training_args.push_to_hub: |
|
repo.push_to_hub(commit_message=f"Saving weights and logs of epoch {epoch}", blocking=False) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|