|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Finetuning a 🤗 Flax Transformers model for sequence classification on GLUE.""" |
|
import json |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import sys |
|
import time |
|
from dataclasses import dataclass, field |
|
from pathlib import Path |
|
from typing import Any, Callable, Dict, Optional, Tuple |
|
|
|
import datasets |
|
import evaluate |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import optax |
|
from datasets import load_dataset |
|
from flax import struct, traverse_util |
|
from flax.jax_utils import pad_shard_unpad, replicate, unreplicate |
|
from flax.training import train_state |
|
from flax.training.common_utils import get_metrics, onehot, shard |
|
from huggingface_hub import Repository, create_repo |
|
from tqdm import tqdm |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoTokenizer, |
|
FlaxAutoModelForSequenceClassification, |
|
HfArgumentParser, |
|
PretrainedConfig, |
|
TrainingArguments, |
|
is_tensorboard_available, |
|
) |
|
from transformers.utils import check_min_version, get_full_repo_name, send_example_telemetry |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
check_min_version("4.28.0.dev0") |
|
|
|
Array = Any |
|
Dataset = datasets.arrow_dataset.Dataset |
|
PRNGKey = Any |
|
|
|
|
|
task_to_keys = { |
|
"cola": ("sentence", None), |
|
"mnli": ("premise", "hypothesis"), |
|
"mrpc": ("sentence1", "sentence2"), |
|
"qnli": ("question", "sentence"), |
|
"qqp": ("question1", "question2"), |
|
"rte": ("sentence1", "sentence2"), |
|
"sst2": ("sentence", None), |
|
"stsb": ("sentence1", "sentence2"), |
|
"wnli": ("sentence1", "sentence2"), |
|
} |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
use_slow_tokenizer: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library)."}, |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
task_name: Optional[str] = field( |
|
default=None, metadata={"help": f"The name of the glue task to train on. choices {list(task_to_keys.keys())}"} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
train_file: Optional[str] = field( |
|
default=None, metadata={"help": "The input training data file (a csv or JSON file)."} |
|
) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."}, |
|
) |
|
test_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."}, |
|
) |
|
text_column_name: Optional[str] = field( |
|
default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."} |
|
) |
|
label_column_name: Optional[str] = field( |
|
default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."} |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
max_seq_length: int = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The maximum total input sequence length after tokenization. If set, sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_predict_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of prediction examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.task_name is None and self.train_file is None and self.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." |
|
self.task_name = self.task_name.lower() if type(self.task_name) == str else self.task_name |
|
|
|
|
|
def create_train_state( |
|
model: FlaxAutoModelForSequenceClassification, |
|
learning_rate_fn: Callable[[int], float], |
|
is_regression: bool, |
|
num_labels: int, |
|
weight_decay: float, |
|
) -> train_state.TrainState: |
|
"""Create initial training state.""" |
|
|
|
class TrainState(train_state.TrainState): |
|
"""Train state with an Optax optimizer. |
|
|
|
The two functions below differ depending on whether the task is classification |
|
or regression. |
|
|
|
Args: |
|
logits_fn: Applied to last layer to obtain the logits. |
|
loss_fn: Function to compute the loss. |
|
""" |
|
|
|
logits_fn: Callable = struct.field(pytree_node=False) |
|
loss_fn: Callable = struct.field(pytree_node=False) |
|
|
|
|
|
|
|
|
|
|
|
def decay_mask_fn(params): |
|
flat_params = traverse_util.flatten_dict(params) |
|
|
|
layer_norm_candidates = ["layernorm", "layer_norm", "ln"] |
|
layer_norm_named_params = { |
|
layer[-2:] |
|
for layer_norm_name in layer_norm_candidates |
|
for layer in flat_params.keys() |
|
if layer_norm_name in "".join(layer).lower() |
|
} |
|
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} |
|
return traverse_util.unflatten_dict(flat_mask) |
|
|
|
tx = optax.adamw( |
|
learning_rate=learning_rate_fn, b1=0.9, b2=0.999, eps=1e-6, weight_decay=weight_decay, mask=decay_mask_fn |
|
) |
|
|
|
if is_regression: |
|
|
|
def mse_loss(logits, labels): |
|
return jnp.mean((logits[..., 0] - labels) ** 2) |
|
|
|
return TrainState.create( |
|
apply_fn=model.__call__, |
|
params=model.params, |
|
tx=tx, |
|
logits_fn=lambda logits: logits[..., 0], |
|
loss_fn=mse_loss, |
|
) |
|
else: |
|
|
|
def cross_entropy_loss(logits, labels): |
|
xentropy = optax.softmax_cross_entropy(logits, onehot(labels, num_classes=num_labels)) |
|
return jnp.mean(xentropy) |
|
|
|
return TrainState.create( |
|
apply_fn=model.__call__, |
|
params=model.params, |
|
tx=tx, |
|
logits_fn=lambda logits: logits.argmax(-1), |
|
loss_fn=cross_entropy_loss, |
|
) |
|
|
|
|
|
def create_learning_rate_fn( |
|
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float |
|
) -> Callable[[int], jnp.array]: |
|
"""Returns a linear warmup, linear_decay learning rate function.""" |
|
steps_per_epoch = train_ds_size // train_batch_size |
|
num_train_steps = steps_per_epoch * num_train_epochs |
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) |
|
decay_fn = optax.linear_schedule( |
|
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps |
|
) |
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) |
|
return schedule_fn |
|
|
|
|
|
def glue_train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int): |
|
"""Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices.""" |
|
steps_per_epoch = len(dataset) // batch_size |
|
perms = jax.random.permutation(rng, len(dataset)) |
|
perms = perms[: steps_per_epoch * batch_size] |
|
perms = perms.reshape((steps_per_epoch, batch_size)) |
|
|
|
for perm in perms: |
|
batch = dataset[perm] |
|
batch = {k: np.array(v) for k, v in batch.items()} |
|
batch = shard(batch) |
|
|
|
yield batch |
|
|
|
|
|
def glue_eval_data_collator(dataset: Dataset, batch_size: int): |
|
"""Returns batches of size `batch_size` from `eval dataset`. Sharding handled by `pad_shard_unpad` in the eval loop.""" |
|
batch_idx = np.arange(len(dataset)) |
|
|
|
steps_per_epoch = math.ceil(len(dataset) / batch_size) |
|
batch_idx = np.array_split(batch_idx, steps_per_epoch) |
|
|
|
for idx in batch_idx: |
|
batch = dataset[idx] |
|
batch = {k: np.array(v) for k, v in batch.items()} |
|
|
|
yield batch |
|
|
|
|
|
def main(): |
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_glue", model_args, data_args, framework="flax") |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if training_args.push_to_hub: |
|
if training_args.hub_model_id is None: |
|
repo_name = get_full_repo_name( |
|
Path(training_args.output_dir).absolute().name, token=training_args.hub_token |
|
) |
|
else: |
|
repo_name = training_args.hub_model_id |
|
create_repo(repo_name, exist_ok=True, token=training_args.hub_token) |
|
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.task_name is not None: |
|
|
|
raw_datasets = load_dataset( |
|
"glue", |
|
data_args.task_name, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
else: |
|
|
|
data_files = {} |
|
if data_args.train_file is not None: |
|
data_files["train"] = data_args.train_file |
|
if data_args.validation_file is not None: |
|
data_files["validation"] = data_args.validation_file |
|
extension = (data_args.train_file if data_args.train_file is not None else data_args.valid_file).split(".")[-1] |
|
raw_datasets = load_dataset( |
|
extension, |
|
data_files=data_files, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
|
|
|
|
if data_args.task_name is not None: |
|
is_regression = data_args.task_name == "stsb" |
|
if not is_regression: |
|
label_list = raw_datasets["train"].features["label"].names |
|
num_labels = len(label_list) |
|
else: |
|
num_labels = 1 |
|
else: |
|
|
|
is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"] |
|
if is_regression: |
|
num_labels = 1 |
|
else: |
|
|
|
|
|
label_list = raw_datasets["train"].unique("label") |
|
label_list.sort() |
|
num_labels = len(label_list) |
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.model_name_or_path, |
|
num_labels=num_labels, |
|
finetuning_task=data_args.task_name, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, |
|
use_fast=not model_args.use_slow_tokenizer, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
model = FlaxAutoModelForSequenceClassification.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
if data_args.task_name is not None: |
|
sentence1_key, sentence2_key = task_to_keys[data_args.task_name] |
|
else: |
|
|
|
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"] |
|
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: |
|
sentence1_key, sentence2_key = "sentence1", "sentence2" |
|
else: |
|
if len(non_label_column_names) >= 2: |
|
sentence1_key, sentence2_key = non_label_column_names[:2] |
|
else: |
|
sentence1_key, sentence2_key = non_label_column_names[0], None |
|
|
|
|
|
label_to_id = None |
|
if ( |
|
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id |
|
and data_args.task_name is not None |
|
and not is_regression |
|
): |
|
|
|
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} |
|
if sorted(label_name_to_id.keys()) == sorted(label_list): |
|
logger.info( |
|
f"The configuration of the model provided the following label correspondence: {label_name_to_id}. " |
|
"Using it!" |
|
) |
|
label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)} |
|
else: |
|
logger.warning( |
|
"Your model seems to have been trained with labels, but they don't match the dataset: ", |
|
f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}." |
|
"\nIgnoring the model labels as a result.", |
|
) |
|
elif data_args.task_name is None: |
|
label_to_id = {v: i for i, v in enumerate(label_list)} |
|
|
|
def preprocess_function(examples): |
|
|
|
texts = ( |
|
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) |
|
) |
|
result = tokenizer(*texts, padding="max_length", max_length=data_args.max_seq_length, truncation=True) |
|
|
|
if "label" in examples: |
|
if label_to_id is not None: |
|
|
|
result["labels"] = [label_to_id[l] for l in examples["label"]] |
|
else: |
|
|
|
result["labels"] = examples["label"] |
|
return result |
|
|
|
processed_datasets = raw_datasets.map( |
|
preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names |
|
) |
|
|
|
train_dataset = processed_datasets["train"] |
|
eval_dataset = processed_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"] |
|
|
|
|
|
for index in random.sample(range(len(train_dataset)), 3): |
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") |
|
|
|
|
|
has_tensorboard = is_tensorboard_available() |
|
if has_tensorboard and jax.process_index() == 0: |
|
try: |
|
from flax.metrics.tensorboard import SummaryWriter |
|
|
|
summary_writer = SummaryWriter(training_args.output_dir) |
|
summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)}) |
|
except ImportError as ie: |
|
has_tensorboard = False |
|
logger.warning( |
|
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" |
|
) |
|
else: |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because the package is not installed: " |
|
"Please run pip install tensorboard to enable." |
|
) |
|
|
|
def write_train_metric(summary_writer, train_metrics, train_time, step): |
|
summary_writer.scalar("train_time", train_time, step) |
|
|
|
train_metrics = get_metrics(train_metrics) |
|
for key, vals in train_metrics.items(): |
|
tag = f"train_{key}" |
|
for i, val in enumerate(vals): |
|
summary_writer.scalar(tag, val, step - len(vals) + i + 1) |
|
|
|
def write_eval_metric(summary_writer, eval_metrics, step): |
|
for metric_name, value in eval_metrics.items(): |
|
summary_writer.scalar(f"eval_{metric_name}", value, step) |
|
|
|
num_epochs = int(training_args.num_train_epochs) |
|
rng = jax.random.PRNGKey(training_args.seed) |
|
dropout_rngs = jax.random.split(rng, jax.local_device_count()) |
|
|
|
train_batch_size = int(training_args.per_device_train_batch_size) * jax.local_device_count() |
|
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) |
|
eval_batch_size = per_device_eval_batch_size * jax.device_count() |
|
|
|
learning_rate_fn = create_learning_rate_fn( |
|
len(train_dataset), |
|
train_batch_size, |
|
training_args.num_train_epochs, |
|
training_args.warmup_steps, |
|
training_args.learning_rate, |
|
) |
|
|
|
state = create_train_state( |
|
model, learning_rate_fn, is_regression, num_labels=num_labels, weight_decay=training_args.weight_decay |
|
) |
|
|
|
|
|
def train_step( |
|
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey |
|
) -> Tuple[train_state.TrainState, float]: |
|
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`.""" |
|
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) |
|
targets = batch.pop("labels") |
|
|
|
def loss_fn(params): |
|
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] |
|
loss = state.loss_fn(logits, targets) |
|
return loss |
|
|
|
grad_fn = jax.value_and_grad(loss_fn) |
|
loss, grad = grad_fn(state.params) |
|
grad = jax.lax.pmean(grad, "batch") |
|
new_state = state.apply_gradients(grads=grad) |
|
metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch") |
|
return new_state, metrics, new_dropout_rng |
|
|
|
p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,)) |
|
|
|
def eval_step(state, batch): |
|
logits = state.apply_fn(**batch, params=state.params, train=False)[0] |
|
return state.logits_fn(logits) |
|
|
|
p_eval_step = jax.pmap(eval_step, axis_name="batch") |
|
|
|
if data_args.task_name is not None: |
|
metric = evaluate.load("glue", data_args.task_name) |
|
else: |
|
metric = evaluate.load("accuracy") |
|
|
|
logger.info(f"===== Starting training ({num_epochs} epochs) =====") |
|
train_time = 0 |
|
|
|
|
|
state = replicate(state) |
|
|
|
steps_per_epoch = len(train_dataset) // train_batch_size |
|
total_steps = steps_per_epoch * num_epochs |
|
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (0/{num_epochs})", position=0) |
|
for epoch in epochs: |
|
train_start = time.time() |
|
train_metrics = [] |
|
|
|
|
|
rng, input_rng = jax.random.split(rng) |
|
|
|
|
|
train_loader = glue_train_data_collator(input_rng, train_dataset, train_batch_size) |
|
for step, batch in enumerate( |
|
tqdm( |
|
train_loader, |
|
total=steps_per_epoch, |
|
desc="Training...", |
|
position=1, |
|
), |
|
): |
|
state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs) |
|
train_metrics.append(train_metric) |
|
|
|
cur_step = (epoch * steps_per_epoch) + (step + 1) |
|
|
|
if cur_step % training_args.logging_steps == 0 and cur_step > 0: |
|
|
|
train_metric = unreplicate(train_metric) |
|
train_time += time.time() - train_start |
|
if has_tensorboard and jax.process_index() == 0: |
|
write_train_metric(summary_writer, train_metrics, train_time, cur_step) |
|
|
|
epochs.write( |
|
f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:" |
|
f" {train_metric['learning_rate']})" |
|
) |
|
|
|
train_metrics = [] |
|
|
|
if (cur_step % training_args.eval_steps == 0 or cur_step % steps_per_epoch == 0) and cur_step > 0: |
|
|
|
eval_loader = glue_eval_data_collator(eval_dataset, eval_batch_size) |
|
for batch in tqdm( |
|
eval_loader, |
|
total=math.ceil(len(eval_dataset) / eval_batch_size), |
|
desc="Evaluating ...", |
|
position=2, |
|
): |
|
labels = batch.pop("labels") |
|
predictions = pad_shard_unpad(p_eval_step)( |
|
state, batch, min_device_batch=per_device_eval_batch_size |
|
) |
|
metric.add_batch(predictions=np.array(predictions), references=labels) |
|
|
|
eval_metric = metric.compute() |
|
|
|
logger.info(f"Step... ({cur_step}/{total_steps} | Eval metrics: {eval_metric})") |
|
|
|
if has_tensorboard and jax.process_index() == 0: |
|
write_eval_metric(summary_writer, eval_metric, cur_step) |
|
|
|
if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps): |
|
|
|
if jax.process_index() == 0: |
|
params = jax.device_get(unreplicate(state.params)) |
|
model.save_pretrained(training_args.output_dir, params=params) |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
if training_args.push_to_hub: |
|
repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) |
|
epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}" |
|
|
|
|
|
if jax.process_index() == 0: |
|
eval_metric = {f"eval_{metric_name}": value for metric_name, value in eval_metric.items()} |
|
path = os.path.join(training_args.output_dir, "eval_results.json") |
|
with open(path, "w") as f: |
|
json.dump(eval_metric, f, indent=4, sort_keys=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|