Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
# Use a pipeline as a high-level helper
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
pipe = pipeline("object-detection", model="facebook/detr-resnet-101")
|
8 |
+
|
9 |
+
from PIL import Image, ImageDraw, ImageFont
|
10 |
+
|
11 |
+
def merge_bboxes(bboxes, threshold=50):
|
12 |
+
"""
|
13 |
+
Merges bounding boxes that are close to each other into one.
|
14 |
+
|
15 |
+
:param bboxes: List of bounding boxes (xmin, ymin, xmax, ymax)
|
16 |
+
:param threshold: Maximum distance between boxes to be considered as part of the same object
|
17 |
+
:return: List of merged bounding boxes
|
18 |
+
"""
|
19 |
+
merged_bboxes = []
|
20 |
+
for bbox in bboxes:
|
21 |
+
added = False
|
22 |
+
for i, merged_bbox in enumerate(merged_bboxes):
|
23 |
+
if (abs(bbox[0] - merged_bbox[0]) < threshold and abs(bbox[1] - merged_bbox[1]) < threshold) or \
|
24 |
+
(abs(bbox[2] - merged_bbox[2]) < threshold and abs(bbox[3] - merged_bbox[3]) < threshold):
|
25 |
+
# Merge the boxes by extending the boundaries
|
26 |
+
new_bbox = (
|
27 |
+
min(bbox[0], merged_bbox[0]),
|
28 |
+
min(bbox[1], merged_bbox[1]),
|
29 |
+
max(bbox[2], merged_bbox[2]),
|
30 |
+
max(bbox[3], merged_bbox[3])
|
31 |
+
)
|
32 |
+
merged_bboxes[i] = new_bbox
|
33 |
+
added = True
|
34 |
+
break
|
35 |
+
if not added:
|
36 |
+
merged_bboxes.append(bbox)
|
37 |
+
return merged_bboxes
|
38 |
+
|
39 |
+
def draw_bounding_boxes(image, detections):
|
40 |
+
"""
|
41 |
+
Draws bounding boxes on the given PIL image based on the object detection results.
|
42 |
+
Merges close bounding boxes to avoid duplicate detections.
|
43 |
+
|
44 |
+
:param image: PIL Image object
|
45 |
+
:param detections: List of dictionaries containing object detection results
|
46 |
+
:return: PIL Image with bounding boxes
|
47 |
+
"""
|
48 |
+
draw = ImageDraw.Draw(image)
|
49 |
+
|
50 |
+
try:
|
51 |
+
font = ImageFont.truetype("arial.ttf", 40) # Load font (adjust size as needed)
|
52 |
+
except:
|
53 |
+
font = ImageFont.load_default() # Use default font if Arial is not available
|
54 |
+
|
55 |
+
bboxes = []
|
56 |
+
labels = []
|
57 |
+
|
58 |
+
# Collect all bounding boxes and labels
|
59 |
+
for obj in detections:
|
60 |
+
box = obj["box"]
|
61 |
+
label = f"{obj['label']} ({obj['score']:.2f})"
|
62 |
+
xmin, ymin, xmax, ymax = box["xmin"], box["ymin"], box["xmax"], box["ymax"]
|
63 |
+
|
64 |
+
bboxes.append((xmin, ymin, xmax, ymax))
|
65 |
+
labels.append(label)
|
66 |
+
|
67 |
+
# Merge close bounding boxes
|
68 |
+
merged_bboxes = merge_bboxes(bboxes)
|
69 |
+
|
70 |
+
# Draw bounding boxes and labels for merged boxes
|
71 |
+
for idx, bbox in enumerate(merged_bboxes):
|
72 |
+
xmin, ymin, xmax, ymax = bbox
|
73 |
+
label = labels[idx]
|
74 |
+
|
75 |
+
# Draw bounding box
|
76 |
+
draw.rectangle([xmin, ymin, xmax, ymax], outline="red", width=5)
|
77 |
+
|
78 |
+
# Adjust label placement to avoid overlap
|
79 |
+
label_bbox = draw.textbbox((xmin, ymin), label, font=font)
|
80 |
+
label_width, label_height = label_bbox[2] - label_bbox[0], label_bbox[3] - label_bbox[1]
|
81 |
+
label_x = xmin
|
82 |
+
label_y = ymin - label_height if ymin - label_height > 0 else ymin + 5 # Adjust above or below box
|
83 |
+
|
84 |
+
# Draw label background to make text more visible
|
85 |
+
draw.rectangle([label_x, label_y, label_x + label_width, label_y + label_height], fill="red")
|
86 |
+
draw.text((label_x, label_y), label, fill="white", font=font)
|
87 |
+
|
88 |
+
return image
|
89 |
+
|
90 |
+
# Example usage:
|
91 |
+
# image = Image.open("your_image.jpg")
|
92 |
+
# detections = [{'score': 0.92, 'label': 'dog', 'box': {'xmin': 2929, 'ymin': 1297, 'xmax': 5067, 'ymax': 3693}}, ...]
|
93 |
+
# image_with_boxes = draw_bounding_boxes(image, detections)
|
94 |
+
# image_with_boxes.show()
|
95 |
+
|
96 |
+
def detect_object(image):
|
97 |
+
raw_imagee = image
|
98 |
+
output=pipe(raw_imagee)
|
99 |
+
processed_image = draw_bounding_boxes(raw_imagee, output)
|
100 |
+
return processed_image
|
101 |
+
|
102 |
+
demo = gr.Interface(fn = detect_object,
|
103 |
+
inputs=[gr.Image(label='Please upload the file to detect the data', type='pil')],
|
104 |
+
outputs=[gr.Image(label='Detected object', type='pil')],
|
105 |
+
title= 'Object Detector',
|
106 |
+
description = 'This application will be used to detect image'
|
107 |
+
)
|
108 |
+
|
109 |
+
demo.launch(share=True)
|