|
import torch |
|
import gradio as gr |
|
|
|
|
|
from transformers import pipeline |
|
|
|
pipe = pipeline("question-answering", model="deepset/roberta-base-squad2") |
|
|
|
|
|
def read_file_content(file_obj): |
|
try: |
|
with open(file_obj.name, "r", encoding="utf-8") as f: |
|
content = f.read() |
|
return content |
|
except Exception as e: |
|
return f"An error occurred: {e}" |
|
|
|
|
|
def get_answer(file, question): |
|
context= read_file_content(file) |
|
answer = pipe(question=question, context = context) |
|
return (answer['answer']) |
|
|
|
demo = gr.Interface(fn=get_answer, |
|
inputs= [gr.File(label="Upload the file for context"), gr.Textbox(label='Ask the question')], |
|
outputs=[gr.Textbox(label='Here is the answer to your question')], |
|
title='Get the Answers to your question', |
|
description='This application gives the answers to your questions' |
|
|
|
|
|
) |
|
demo.launch() |