import streamlit as st from transformers import pipeline import torch import PyPDF2 from io import BytesIO st.set_page_config( page_title="TextSphere", page_icon="🤖", layout="wide", initial_sidebar_state="expanded" ) st.markdown(""" """, unsafe_allow_html=True) @st.cache_resource def load_models(): try: text_classification_model = pipeline( "text-classification", model="distilbert-base-uncased-finetuned-sst-2-english" ) question_answering_model = pipeline( "question-answering", model="distilbert-base-uncased-distilled-squad" ) translation_model = pipeline( "translation", model="Helsinki-NLP/opus-mt-en-fr" ) summarization_model = pipeline( "summarization", model="facebook/bart-large-cnn" ) except Exception as e: raise RuntimeError(f"Failed to load models: {str(e)}") return text_classification_model, question_answering_model, translation_model, summarization_model def extract_text_from_pdf(uploaded_pdf): try: pdf_reader = PyPDF2.PdfReader(uploaded_pdf) pdf_text = "" for page_num in range(len(pdf_reader.pages)): page = pdf_reader.pages[page_num] pdf_text += page.extract_text() return pdf_text except Exception as e: st.error(f"Error reading the PDF: {e}") return None try: classification_model, qa_model, translation_model, summarization_model = load_models() except Exception as e: st.error(f"An error occurred while loading models: {e}") st.sidebar.title("AI Solutions") option = st.sidebar.selectbox( "Choose a task", ["Question Answering", "Text Classification", "Language Translation", "Text Summarization"] ) if option == "Question Answering": st.title("Question Answering") st.markdown("

- because Google wasn't enough 😉

", unsafe_allow_html=True) uploaded_pdf = st.file_uploader("Upload a PDF file (optional)", type="pdf") context_input = st.text_area("Enter context (a paragraph of text, or leave empty if using PDF):") question = st.text_input("Enter your question:") if uploaded_pdf: context_input = extract_text_from_pdf(uploaded_pdf) if st.button("Get Answer"): with st.spinner('Getting answer...'): try: if context_input and question: answer = qa_model(question=question, context=context_input) st.write("Answer:", answer['answer']) st.balloons() else: st.error("Please enter both context and a question.") except Exception as e: st.error(f"An error occurred: {e}") elif option == "Text Classification": st.title("Text Classification") st.markdown("

- where machines learn to hate spam as much we do 😅

", unsafe_allow_html=True) text = st.text_area("Enter text for classification:") if st.button("Classify Text"): with st.spinner('Classifying text...'): try: classification = classification_model(text) st.json(classification) st.balloons() except Exception as e: st.error(f"An error occurred: {e}") elif option == "Language Translation": st.title("Language Translation (English to Multiple Languages)") st.markdown("

- when 'translate' is the only button you know 😁

", unsafe_allow_html=True) target_language = st.selectbox("Choose target language", ["French", "Spanish", "German", "Italian", "Portuguese", "Hindi"]) language_models = { "French": "Helsinki-NLP/opus-mt-en-fr", "Spanish": "Helsinki-NLP/opus-mt-en-es", "German": "Helsinki-NLP/opus-mt-en-de", "Italian": "Helsinki-NLP/opus-mt-en-it", "Portuguese": "Helsinki-NLP/opus-mt-en-pt", "Hindi": "Helsinki-NLP/opus-mt-en-hi" } selected_model = language_models.get(target_language) if selected_model: translation_model = pipeline("translation", model=selected_model) text_to_translate = st.text_area(f"Enter text to translate from English to {target_language}:") if st.button("Translate"): with st.spinner('Translating text...'): try: if text_to_translate: translated_text = translation_model(text_to_translate) st.write(f"Translated Text ({target_language}):", translated_text[0]['translation_text']) st.balloons() else: st.error("Please enter text to translate.") except Exception as e: st.error(f"An error occurred: {e}") elif option == "Text Summarization": st.title("Text Summarization") st.markdown("

- because who needs to read the whole article, anyway? 🥵

", unsafe_allow_html=True) uploaded_pdf = st.file_uploader("Upload a PDF file (optional)", type="pdf") text_to_summarize = st.text_area("Enter text to summarize (or leave empty if using PDF):") if uploaded_pdf: text_to_summarize = extract_text_from_pdf(uploaded_pdf) if st.button("Summarize"): with st.spinner('Summarizing text...'): try: if text_to_summarize: summary = summarization_model(text_to_summarize, max_length=130, min_length=30, do_sample=False) st.write("Summary:", summary[0]['summary_text']) st.balloons() else: st.error("Please enter text or upload a PDF for summarization.") except Exception as e: st.error(f"An error occurred: {e}")