File size: 18,725 Bytes
9cf98e1 ac28dc4 9340499 ac28dc4 a812692 ac28dc4 420ea59 a812692 ac28dc4 e74aea7 ac28dc4 e74aea7 ac28dc4 e74aea7 a812692 420ea59 e74aea7 ac28dc4 420ea59 ac28dc4 1174a8a 8a10c55 c6d0958 1174a8a ef26308 1174a8a c6d0958 1174a8a 9340499 c6d0958 a812692 9340499 a812692 9cf98e1 ac28dc4 420ea59 1174a8a e74aea7 c6d0958 a8d09fe ac28dc4 91da599 ac28dc4 c6d0958 ac28dc4 c6d0958 420ea59 c6d0958 420ea59 c6d0958 ac28dc4 e74aea7 ac28dc4 1174a8a a812692 1174a8a ac28dc4 420ea59 ac28dc4 9340499 a812692 4cde2bd a924296 9340499 e74aea7 9340499 e74aea7 9340499 e74aea7 9340499 e74aea7 ac28dc4 198a0e4 ac28dc4 198a0e4 ac28dc4 420ea59 198a0e4 e74aea7 198a0e4 e74aea7 a812692 e74aea7 ac28dc4 198a0e4 ac28dc4 ec4d5dc a8d09fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import spaces
import gradio as gr
import torch
import torchaudio
import librosa
from modules.commons import build_model, load_checkpoint, recursive_munch
import yaml
from hf_utils import load_custom_model_from_hf
import numpy as np
from pydub import AudioSegment
# Load model and configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
# dit_checkpoint_path = "E:/DiT_epoch_00018_step_801000.pth"
# dit_config_path = "configs/config_dit_mel_seed_uvit_whisper_small_encoder_wavenet.yml"
config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, stage='DiT')
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']
# Load checkpoints
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model:
model[key].eval()
model[key].to(device)
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Load additional modules
from modules.campplus.DTDNN import CAMPPlus
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
campplus_model.eval()
campplus_model.to(device)
from modules.bigvgan import bigvgan
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
# remove weight norm in the model and set to eval mode
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
codec_config = yaml.safe_load(open(config_path))
codec_model_params = recursive_munch(codec_config['model_params'])
codec_encoder = build_model(codec_model_params, stage="codec")
ckpt_params = torch.load(ckpt_path, map_location="cpu")
for key in codec_encoder:
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
_ = [codec_encoder[key].eval() for key in codec_encoder]
_ = [codec_encoder[key].to(device) for key in codec_encoder]
# whisper
from transformers import AutoFeatureExtractor, WhisperModel
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer,
'whisper_name') else "openai/whisper-small"
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
del whisper_model.decoder
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
# Generate mel spectrograms
mel_fn_args = {
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
"win_size": config['preprocess_params']['spect_params']['win_length'],
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": sr,
"fmin": 0,
"fmax": None,
"center": False
}
from modules.audio import mel_spectrogram
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
# f0 conditioned model
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
"DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
"config_dit_mel_seed_uvit_whisper_base_f0_44k.yml")
config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model_f0 = build_model(model_params, stage='DiT')
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']
# Load checkpoints
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path,
load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model_f0:
model_f0[key].eval()
model_f0[key].to(device)
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# f0 extractor
from modules.rmvpe import RMVPE
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
rmvpe = RMVPE(model_path, is_half=False, device=device)
mel_fn_args_f0 = {
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
"win_size": config['preprocess_params']['spect_params']['win_length'],
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": sr,
"fmin": 0,
"fmax": None,
"center": False
}
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
# remove weight norm in the model and set to eval mode
bigvgan_44k_model.remove_weight_norm()
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
def adjust_f0_semitones(f0_sequence, n_semitones):
factor = 2 ** (n_semitones / 12)
return f0_sequence * factor
def crossfade(chunk1, chunk2, overlap):
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
return chunk2
# streaming and chunk processing related params
bitrate = "320k"
overlap_frame_len = 16
@spaces.GPU
@torch.no_grad()
@torch.inference_mode()
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift):
inference_module = model if not f0_condition else model_f0
mel_fn = to_mel if not f0_condition else to_mel_f0
bigvgan_fn = bigvgan_model if not f0_condition else bigvgan_44k_model
sr = 22050 if not f0_condition else 44100
hop_length = 256 if not f0_condition else 512
max_context_window = sr // hop_length * 30
overlap_wave_len = overlap_frame_len * hop_length
# Load audio
source_audio = librosa.load(source, sr=sr)[0]
ref_audio = librosa.load(target, sr=sr)[0]
# Process audio
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device)
# Resample
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
# if source audio less than 30 seconds, whisper can handle in one forward
if converted_waves_16k.size(-1) <= 16000 * 30:
alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True,
sampling_rate=16000)
alt_input_features = whisper_model._mask_input_features(
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
alt_outputs = whisper_model.encoder(
alt_input_features.to(whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
else:
overlapping_time = 5 # 5 seconds
S_alt_list = []
buffer = None
traversed_time = 0
while traversed_time < converted_waves_16k.size(-1):
if buffer is None: # first chunk
chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30]
else:
chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1)
alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True,
sampling_rate=16000)
alt_input_features = whisper_model._mask_input_features(
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
alt_outputs = whisper_model.encoder(
alt_input_features.to(whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
S_alt = S_alt[:, :chunk.size(-1) // 320 + 1]
if traversed_time == 0:
S_alt_list.append(S_alt)
else:
S_alt_list.append(S_alt[:, 50 * overlapping_time:])
buffer = chunk[:, -16000 * overlapping_time:]
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
S_alt = torch.cat(S_alt_list, dim=1)
ori_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True)
ori_input_features = whisper_model._mask_input_features(
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
with torch.no_grad():
ori_outputs = whisper_model.encoder(
ori_input_features.to(whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
mel = mel_fn(source_audio.to(device).float())
mel2 = mel_fn(ref_audio.to(device).float())
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
style2 = campplus_model(feat2.unsqueeze(0))
if f0_condition:
F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.5)
F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.5)
F0_ori = torch.from_numpy(F0_ori).to(device)[None]
F0_alt = torch.from_numpy(F0_alt).to(device)[None]
voiced_F0_ori = F0_ori[F0_ori > 1]
voiced_F0_alt = F0_alt[F0_alt > 1]
log_f0_alt = torch.log(F0_alt + 1e-5)
voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5)
voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
median_log_f0_ori = torch.median(voiced_log_f0_ori)
median_log_f0_alt = torch.median(voiced_log_f0_alt)
# shift alt log f0 level to ori log f0 level
shifted_log_f0_alt = log_f0_alt.clone()
if auto_f0_adjust:
shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori
shifted_f0_alt = torch.exp(shifted_log_f0_alt)
if pitch_shift != 0:
shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift)
else:
F0_ori = None
F0_alt = None
shifted_f0_alt = None
# Length regulation
cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt)
prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori)
max_source_window = max_context_window - mel2.size(2)
# split source condition (cond) into chunks
processed_frames = 0
generated_wave_chunks = []
# generate chunk by chunk and stream the output
while processed_frames < cond.size(1):
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
is_last_chunk = processed_frames + max_source_window >= cond.size(1)
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
with torch.autocast(device_type='cuda', dtype=torch.float16):
# Voice Conversion
vc_target = inference_module.cfm.inference(cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
mel2, style2, None, diffusion_steps,
inference_cfg_rate=inference_cfg_rate)
vc_target = vc_target[:, :, mel2.size(-1):]
vc_wave = bigvgan_fn(vc_target.float())[0]
if processed_frames == 0:
if is_last_chunk:
output_wave = vc_wave[0].cpu().numpy()
generated_wave_chunks.append(output_wave)
output_wave = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave.tobytes(), frame_rate=sr,
sample_width=output_wave.dtype.itemsize, channels=1
).export(format="mp3", bitrate=bitrate).read()
yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
break
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
generated_wave_chunks.append(output_wave)
previous_chunk = vc_wave[0, -overlap_wave_len:]
processed_frames += vc_target.size(2) - overlap_frame_len
output_wave = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave.tobytes(), frame_rate=sr,
sample_width=output_wave.dtype.itemsize, channels=1
).export(format="mp3", bitrate=bitrate).read()
yield mp3_bytes, None
elif is_last_chunk:
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
generated_wave_chunks.append(output_wave)
processed_frames += vc_target.size(2) - overlap_frame_len
output_wave = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave.tobytes(), frame_rate=sr,
sample_width=output_wave.dtype.itemsize, channels=1
).export(format="mp3", bitrate=bitrate).read()
yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
break
else:
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len)
generated_wave_chunks.append(output_wave)
previous_chunk = vc_wave[0, -overlap_wave_len:]
processed_frames += vc_target.size(2) - overlap_frame_len
output_wave = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave.tobytes(), frame_rate=sr,
sample_width=output_wave.dtype.itemsize, channels=1
).export(format="mp3", bitrate=bitrate).read()
yield mp3_bytes, None
if __name__ == "__main__":
description = ("Zero-shot音声変換モデル(学習不要)。ローカルでの利用方法は[GitHubリポジトリ](https://github.com/Plachtaa/seed-vc)をご覧ください。"
"参考音声が25秒を超える場合、自動的に25秒にクリップされます。"
"また、元音声と参考音声の合計時間が30秒を超える場合、元音声は分割処理されます。")
inputs = [
gr.Audio(type="filepath", label="元音声"),
gr.Audio(type="filepath", label="参考音声"),
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="拡散ステップ数", info="デフォルトは10、50~100が最適な品質"),
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="長さ調整", info="1.0未満で速度を上げ、1.0以上で速度を遅くします"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="推論CFG率", info="わずかな影響があります"),
gr.Checkbox(label="F0条件付きモデルを使用", value=False, info="歌声変換には必須です"),
gr.Checkbox(label="F0自動調整", value=True, info="F0をおおよそ調整して目標音声に合わせます。F0条件付きモデル使用時にのみ有効です"),
gr.Slider(label='音程変換', minimum=-24, maximum=24, step=1, value=0, info="半音単位の音程変換。F0条件付きモデル使用時にのみ有効です"),
]
examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, True, True, 0],
["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
"examples/reference/teio_0.wav", 100, 1.0, 0.7, True, False, 0],
["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
"examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12],
]
outputs = [gr.Audio(label="ストリーム出力音声", streaming=True, format='mp3'),
gr.Audio(label="完全出力音声", streaming=False, format='wav')]
gr.Interface(fn=voice_conversion,
description=description,
inputs=inputs,
outputs=outputs,
title="Seed Voice Conversion",
examples=examples,
cache_examples=False,
).launch() |