Spaces:
Sleeping
Sleeping
AJ-Gazin
commited on
Commit
·
960b542
1
Parent(s):
e7fe866
added streamlit app
Browse files
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import streamlit.components.v1 as components
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
import requests
|
7 |
+
import random
|
8 |
+
from io import BytesIO
|
9 |
+
from PIL import Image
|
10 |
+
from torch_geometric.nn import SAGEConv, to_hetero, Linear
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import os
|
13 |
+
|
14 |
+
from IPython.display import HTML
|
15 |
+
|
16 |
+
import viz_utils
|
17 |
+
import model_def
|
18 |
+
|
19 |
+
load_dotenv() #load environment variables from .env file
|
20 |
+
|
21 |
+
##no clue why this is necessary. But won't see subfolders without it. Just on my laptop.
|
22 |
+
os.chdir(os.path.dirname(os.path.abspath(__file__)))
|
23 |
+
|
24 |
+
API_KEY = os.getenv("HUGGINGFACE_API_KEY")
|
25 |
+
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
|
26 |
+
|
27 |
+
# --- LOAD DATA AND MODEL ---
|
28 |
+
movies_df = pd.read_csv("./sampled_movie_dataset/movies_metadata.csv") # Load your movie data
|
29 |
+
data = torch.load("./PyGdata.pt")
|
30 |
+
|
31 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
32 |
+
model = model_def.Model(hidden_channels=32).to(device)
|
33 |
+
model.load_state_dict(torch.load("PyGTrainedModelState.pt"))
|
34 |
+
model.eval()
|
35 |
+
|
36 |
+
# --- STREAMLIT APP ---
|
37 |
+
st.title("Movie Recommendation App")
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
# --- VISUALIZATIONS ---
|
42 |
+
#with open("umap_visualization.html", "r", encoding='utf-8') as f:
|
43 |
+
# umap_html = f.read()
|
44 |
+
|
45 |
+
#with open("tsne_visualization.html", "r") as f:
|
46 |
+
# tsne_html = f.read()
|
47 |
+
|
48 |
+
#with open("pca_visualization.html", "r") as f:
|
49 |
+
# pca_html = f.read()
|
50 |
+
|
51 |
+
tab1, tab2 = st.tabs(["Visualizations", "Recommendations"])
|
52 |
+
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
a = model.encoder(data.x_dict,data.edge_index_dict)
|
56 |
+
user = pd.DataFrame(a['user'].detach().cpu())
|
57 |
+
movie = pd.DataFrame(a['movie'].detach().cpu())
|
58 |
+
embedding_df = pd.concat([user, movie], axis=0)
|
59 |
+
|
60 |
+
with tab1:
|
61 |
+
umap_expander = st.expander("UMAP Visualization")
|
62 |
+
with umap_expander:
|
63 |
+
st.subheader('UMAP Visualization')
|
64 |
+
umap_fig = viz_utils.visualize_embeddings_umap(embedding_df)
|
65 |
+
st.plotly_chart(umap_fig)
|
66 |
+
#components.html(umap_html, width=800, height=800)
|
67 |
+
|
68 |
+
tsne_expander = st.expander("TSNE Visualization")
|
69 |
+
with tsne_expander:
|
70 |
+
st.subheader('TSNE Visualization')
|
71 |
+
tsne_fig = viz_utils.visualize_embeddings_tsne(embedding_df)
|
72 |
+
st.plotly_chart(tsne_fig)
|
73 |
+
#components.html(tsne_html, width=800, height=800)
|
74 |
+
|
75 |
+
pca_expander = st.expander("PCA Visualization")
|
76 |
+
with pca_expander:
|
77 |
+
st.subheader('PCA Visualization')
|
78 |
+
pca_fig = viz_utils.visualize_embeddings_pca(embedding_df)
|
79 |
+
st.plotly_chart(pca_fig)
|
80 |
+
#components.html(pca_html, width=800, height=800)
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
def get_movie_recommendations(model, data, user_id, total_movies):
|
86 |
+
user_row = torch.tensor([user_id] * total_movies).to(device)
|
87 |
+
all_movie_ids = torch.arange(total_movies).to(device)
|
88 |
+
edge_label_index = torch.stack([user_row, all_movie_ids], dim=0)
|
89 |
+
|
90 |
+
pred = model(data.x_dict, data.edge_index_dict, edge_label_index).to('cpu')
|
91 |
+
top_five_indices = pred.topk(5).indices
|
92 |
+
|
93 |
+
recommended_movies = movies_df.iloc[top_five_indices]
|
94 |
+
return recommended_movies
|
95 |
+
|
96 |
+
def generate_poster(movie_title):
|
97 |
+
headers = {"Authorization": f"Bearer {API_KEY}"}
|
98 |
+
|
99 |
+
#creates random seed so movie poster changes on refresh even if same title.
|
100 |
+
seed = random.randint(0, 2**32 - 1)
|
101 |
+
payload = {
|
102 |
+
"inputs": movie_title,
|
103 |
+
# "parameters": {
|
104 |
+
# "seed": seed
|
105 |
+
# }
|
106 |
+
}
|
107 |
+
|
108 |
+
try:
|
109 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
110 |
+
response.raise_for_status() # Raise an error if the request fails
|
111 |
+
|
112 |
+
# Display the generated image
|
113 |
+
image = Image.open(BytesIO(response.content))
|
114 |
+
st.image(image, caption=movie_title)
|
115 |
+
|
116 |
+
except requests.exceptions.HTTPError as err:
|
117 |
+
st.error(f"Image generation failed: {err}")
|
118 |
+
|
119 |
+
with tab2:
|
120 |
+
user_id = st.number_input("Enter the User ID:", min_value=0)
|
121 |
+
if st.button("Get Recommendations"):
|
122 |
+
st.write("Top 5 Recommendations:")
|
123 |
+
try:
|
124 |
+
total_movies = data['movie'].num_nodes
|
125 |
+
recommended_movies = get_movie_recommendations(model, data, user_id, total_movies)
|
126 |
+
cols = st.columns(3)
|
127 |
+
|
128 |
+
|
129 |
+
for i, row in recommended_movies.iterrows():
|
130 |
+
with cols[i % 3]:
|
131 |
+
#st.write(f"{i+1}. {row['title']}")
|
132 |
+
try:
|
133 |
+
image = generate_poster(row['title'])
|
134 |
+
except requests.exceptions.HTTPError as err:
|
135 |
+
st.error(f"Image generation failed for {row['title']}: {err}")
|
136 |
+
|
137 |
+
except Exception as e:
|
138 |
+
st.error(f"An error occurred: {e}")
|