File size: 3,616 Bytes
5e01e13
ea06e5a
5e01e13
 
3d53c08
 
ea06e5a
602f686
5e01e13
 
 
ea06e5a
5e01e13
 
 
 
 
 
 
be4f1b2
 
 
 
5e01e13
 
 
 
3d53c08
 
 
 
 
 
 
 
 
 
 
 
 
5e01e13
3d53c08
 
 
5e01e13
 
602f686
 
0c0c17a
602f686
 
 
be4f1b2
602f686
 
be4f1b2
602f686
 
3d53c08
 
 
 
602f686
 
 
 
 
8656b6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import json
import gradio as gr
import os
from PIL import Image
import plotly.graph_objects as go
import plotly.express as px

TITLE = "Diffusion Faces Cluster Explorer"
clusters_12 = json.load(open("clusters/id_all_blip_clusters_12.json"))
clusters_24 = json.load(open("clusters/id_all_blip_clusters_24.json"))
clusters_48 = json.load(open("clusters/id_all_blip_clusters_48.json"))

clusters_by_size = {
    12: clusters_12,
    24: clusters_24,
    48: clusters_48,
}

def show_cluster(cl_id, num_clusters):
    if not cl_id:
        cl_id = 0
    if not num_clusters:
        num_clusters = 12
    cl_dct = clusters_by_size[num_clusters][cl_id]
    images = []
    for i in range(6):
        img_path = "/".join([st.replace("/", "") for st in cl_dct['img_path_list'][i].split("//")][3:])
        images.append((Image.open(os.path.join("identities-images", img_path)), "_".join([img_path.split("/")[0], img_path.split("/")[-1]]).replace('Photo_portrait_of_an_','').replace('Photo_portrait_of_a_','').replace('SD_v2_random_seeds_identity_','(SD v.2) ').replace('dataset-identities-dalle2_','(Dall-E 2) ').replace('SD_v1.4_random_seeds_identity_','(SD v.1.4) ').replace('_',' ')))
    model_fig = go.Figure()
    model_fig.add_trace(go.Bar(x=list(dict(cl_dct["labels_model"]).keys()), 
                               y=list(dict(cl_dct["labels_model"]).values()),
                               marker_color=px.colors.qualitative.G10))
    gender_fig = go.Figure()
    gender_fig.add_trace(go.Bar(x=list(dict(cl_dct["labels_gender"]).keys()), 
                                y=list(dict(cl_dct["labels_gender"]).values()),
                                marker_color=px.colors.qualitative.G10))
    ethnicity_fig = go.Figure()
    ethnicity_fig.add_trace(go.Bar(x=list(dict(cl_dct["labels_ethnicity"]).keys()), 
                                   y=list(dict(cl_dct["labels_ethnicity"]).values()), 
                                   marker_color=px.colors.qualitative.G10))
    return (len(cl_dct['img_path_list']),
            gender_fig,
            model_fig,
            ethnicity_fig,
            images)

with gr.Blocks(title=TITLE) as demo:
    gr.Markdown(f"# {TITLE}")
    gr.Markdown("## This Space lets you explore the data generated from [DiffusionBiasExplorer](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer).")
    gr.HTML("""<span style="color:red" font-size:smaller>⚠️ DISCLAIMER: the images displayed by this tool were generated by text-to-image models and may depict offensive stereotypes or contain explicit content.</span>""")
    num_clusters = gr.Radio([12,24,48], value=12, label="How many clusters do you want to make from the data?")

    with gr.Row():
        with gr.Column(scale=4):
            gallery = gr.Gallery(label="Most representative images in cluster").style(grid=(3,3))
        with gr.Column():
            cluster_id = gr.Slider(minimum=0, maximum=num_clusters.value-1, step=1, value=0, label="Click to move between clusters")
            a = gr.Text(label="Number of images")
    with gr.Row():
            c = gr.Plot(label="Model makeup of cluster")
            b = gr.Plot(label="Gender label makeup of cluster")
            d = gr.Plot(label="Ethnicity label makeup of cluster")
    demo.load(fn=show_cluster, inputs=[cluster_id, num_clusters], outputs=[a,b,c,d, gallery])
    num_clusters.change(fn=show_cluster, inputs=[cluster_id, num_clusters], outputs=[a,b,c,d, gallery])
    cluster_id.change(fn=show_cluster, inputs=[cluster_id, num_clusters], outputs=[a,b,c,d, gallery])

if __name__ == "__main__":
    demo.queue().launch(debug=True)