Spaces:
Sleeping
Sleeping
gpt-omni
commited on
Commit
·
008f4a1
1
Parent(s):
e6f5492
fix snac
Browse files- inference.py +1 -1
- snac_utils.py +0 -143
- utils/snac_utils.py +11 -8
inference.py
CHANGED
|
@@ -494,7 +494,7 @@ class OmniInference:
|
|
| 494 |
if current_index == nums_generate:
|
| 495 |
current_index = 0
|
| 496 |
snac = get_snac(list_output, index, nums_generate)
|
| 497 |
-
audio_stream = generate_audio_data(snac, self.snacmodel)
|
| 498 |
yield audio_stream
|
| 499 |
|
| 500 |
input_pos = input_pos.add_(1)
|
|
|
|
| 494 |
if current_index == nums_generate:
|
| 495 |
current_index = 0
|
| 496 |
snac = get_snac(list_output, index, nums_generate)
|
| 497 |
+
audio_stream = generate_audio_data(snac, self.snacmodel, self.device)
|
| 498 |
yield audio_stream
|
| 499 |
|
| 500 |
input_pos = input_pos.add_(1)
|
snac_utils.py
DELETED
|
@@ -1,143 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import time
|
| 3 |
-
import numpy as np
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
class SnacConfig:
|
| 7 |
-
audio_vocab_size = 4096
|
| 8 |
-
padded_vocab_size = 4160
|
| 9 |
-
end_of_audio = 4097
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
snac_config = SnacConfig()
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
def get_time_str():
|
| 16 |
-
time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime())
|
| 17 |
-
return time_str
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def layershift(input_id, layer, stride=4160, shift=152000):
|
| 21 |
-
return input_id + shift + layer * stride
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
def generate_audio_data(snac_tokens, snacmodel):
|
| 25 |
-
audio = reconstruct_tensors(snac_tokens)
|
| 26 |
-
with torch.inference_mode():
|
| 27 |
-
audio_hat = snacmodel.decode(audio)
|
| 28 |
-
audio_data = audio_hat.cpu().numpy().astype(np.float64) * 32768.0
|
| 29 |
-
audio_data = audio_data.astype(np.int16)
|
| 30 |
-
audio_data = audio_data.tobytes()
|
| 31 |
-
return audio_data
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def get_snac(list_output, index, nums_generate):
|
| 35 |
-
|
| 36 |
-
snac = []
|
| 37 |
-
start = index
|
| 38 |
-
for i in range(nums_generate):
|
| 39 |
-
snac.append("#")
|
| 40 |
-
for j in range(7):
|
| 41 |
-
snac.append(list_output[j][start - nums_generate - 5 + j + i])
|
| 42 |
-
return snac
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def reconscruct_snac(output_list):
|
| 46 |
-
if len(output_list) == 8:
|
| 47 |
-
output_list = output_list[:-1]
|
| 48 |
-
output = []
|
| 49 |
-
for i in range(7):
|
| 50 |
-
output_list[i] = output_list[i][i + 1 :]
|
| 51 |
-
for i in range(len(output_list[-1])):
|
| 52 |
-
output.append("#")
|
| 53 |
-
for j in range(7):
|
| 54 |
-
output.append(output_list[j][i])
|
| 55 |
-
return output
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
def reconstruct_tensors(flattened_output):
|
| 59 |
-
"""Reconstructs the list of tensors from the flattened output."""
|
| 60 |
-
|
| 61 |
-
def count_elements_between_hashes(lst):
|
| 62 |
-
try:
|
| 63 |
-
# Find the index of the first '#'
|
| 64 |
-
first_index = lst.index("#")
|
| 65 |
-
# Find the index of the second '#' after the first
|
| 66 |
-
second_index = lst.index("#", first_index + 1)
|
| 67 |
-
# Count the elements between the two indices
|
| 68 |
-
return second_index - first_index - 1
|
| 69 |
-
except ValueError:
|
| 70 |
-
# Handle the case where there aren't enough '#' symbols
|
| 71 |
-
return "List does not contain two '#' symbols"
|
| 72 |
-
|
| 73 |
-
def remove_elements_before_hash(flattened_list):
|
| 74 |
-
try:
|
| 75 |
-
# Find the index of the first '#'
|
| 76 |
-
first_hash_index = flattened_list.index("#")
|
| 77 |
-
# Return the list starting from the first '#'
|
| 78 |
-
return flattened_list[first_hash_index:]
|
| 79 |
-
except ValueError:
|
| 80 |
-
# Handle the case where there is no '#'
|
| 81 |
-
return "List does not contain the symbol '#'"
|
| 82 |
-
|
| 83 |
-
def list_to_torch_tensor(tensor1):
|
| 84 |
-
# Convert the list to a torch tensor
|
| 85 |
-
tensor = torch.tensor(tensor1)
|
| 86 |
-
# Reshape the tensor to have size (1, n)
|
| 87 |
-
tensor = tensor.unsqueeze(0)
|
| 88 |
-
return tensor
|
| 89 |
-
|
| 90 |
-
flattened_output = remove_elements_before_hash(flattened_output)
|
| 91 |
-
codes = []
|
| 92 |
-
tensor1 = []
|
| 93 |
-
tensor2 = []
|
| 94 |
-
tensor3 = []
|
| 95 |
-
tensor4 = []
|
| 96 |
-
|
| 97 |
-
n_tensors = count_elements_between_hashes(flattened_output)
|
| 98 |
-
if n_tensors == 7:
|
| 99 |
-
for i in range(0, len(flattened_output), 8):
|
| 100 |
-
|
| 101 |
-
tensor1.append(flattened_output[i + 1])
|
| 102 |
-
tensor2.append(flattened_output[i + 2])
|
| 103 |
-
tensor3.append(flattened_output[i + 3])
|
| 104 |
-
tensor3.append(flattened_output[i + 4])
|
| 105 |
-
|
| 106 |
-
tensor2.append(flattened_output[i + 5])
|
| 107 |
-
tensor3.append(flattened_output[i + 6])
|
| 108 |
-
tensor3.append(flattened_output[i + 7])
|
| 109 |
-
codes = [
|
| 110 |
-
list_to_torch_tensor(tensor1).cuda(),
|
| 111 |
-
list_to_torch_tensor(tensor2).cuda(),
|
| 112 |
-
list_to_torch_tensor(tensor3).cuda(),
|
| 113 |
-
]
|
| 114 |
-
|
| 115 |
-
if n_tensors == 15:
|
| 116 |
-
for i in range(0, len(flattened_output), 16):
|
| 117 |
-
|
| 118 |
-
tensor1.append(flattened_output[i + 1])
|
| 119 |
-
tensor2.append(flattened_output[i + 2])
|
| 120 |
-
tensor3.append(flattened_output[i + 3])
|
| 121 |
-
tensor4.append(flattened_output[i + 4])
|
| 122 |
-
tensor4.append(flattened_output[i + 5])
|
| 123 |
-
tensor3.append(flattened_output[i + 6])
|
| 124 |
-
tensor4.append(flattened_output[i + 7])
|
| 125 |
-
tensor4.append(flattened_output[i + 8])
|
| 126 |
-
|
| 127 |
-
tensor2.append(flattened_output[i + 9])
|
| 128 |
-
tensor3.append(flattened_output[i + 10])
|
| 129 |
-
tensor4.append(flattened_output[i + 11])
|
| 130 |
-
tensor4.append(flattened_output[i + 12])
|
| 131 |
-
tensor3.append(flattened_output[i + 13])
|
| 132 |
-
tensor4.append(flattened_output[i + 14])
|
| 133 |
-
tensor4.append(flattened_output[i + 15])
|
| 134 |
-
|
| 135 |
-
codes = [
|
| 136 |
-
list_to_torch_tensor(tensor1).cuda(),
|
| 137 |
-
list_to_torch_tensor(tensor2).cuda(),
|
| 138 |
-
list_to_torch_tensor(tensor3).cuda(),
|
| 139 |
-
list_to_torch_tensor(tensor4).cuda(),
|
| 140 |
-
]
|
| 141 |
-
|
| 142 |
-
return codes
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/snac_utils.py
CHANGED
|
@@ -55,9 +55,12 @@ def reconscruct_snac(output_list):
|
|
| 55 |
return output
|
| 56 |
|
| 57 |
|
| 58 |
-
def reconstruct_tensors(flattened_output):
|
| 59 |
"""Reconstructs the list of tensors from the flattened output."""
|
| 60 |
|
|
|
|
|
|
|
|
|
|
| 61 |
def count_elements_between_hashes(lst):
|
| 62 |
try:
|
| 63 |
# Find the index of the first '#'
|
|
@@ -107,9 +110,9 @@ def reconstruct_tensors(flattened_output):
|
|
| 107 |
tensor3.append(flattened_output[i + 6])
|
| 108 |
tensor3.append(flattened_output[i + 7])
|
| 109 |
codes = [
|
| 110 |
-
list_to_torch_tensor(tensor1).
|
| 111 |
-
list_to_torch_tensor(tensor2).
|
| 112 |
-
list_to_torch_tensor(tensor3).
|
| 113 |
]
|
| 114 |
|
| 115 |
if n_tensors == 15:
|
|
@@ -133,10 +136,10 @@ def reconstruct_tensors(flattened_output):
|
|
| 133 |
tensor4.append(flattened_output[i + 15])
|
| 134 |
|
| 135 |
codes = [
|
| 136 |
-
list_to_torch_tensor(tensor1).
|
| 137 |
-
list_to_torch_tensor(tensor2).
|
| 138 |
-
list_to_torch_tensor(tensor3).
|
| 139 |
-
list_to_torch_tensor(tensor4).
|
| 140 |
]
|
| 141 |
|
| 142 |
return codes
|
|
|
|
| 55 |
return output
|
| 56 |
|
| 57 |
|
| 58 |
+
def reconstruct_tensors(flattened_output, device=None):
|
| 59 |
"""Reconstructs the list of tensors from the flattened output."""
|
| 60 |
|
| 61 |
+
if device is None:
|
| 62 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 63 |
+
|
| 64 |
def count_elements_between_hashes(lst):
|
| 65 |
try:
|
| 66 |
# Find the index of the first '#'
|
|
|
|
| 110 |
tensor3.append(flattened_output[i + 6])
|
| 111 |
tensor3.append(flattened_output[i + 7])
|
| 112 |
codes = [
|
| 113 |
+
list_to_torch_tensor(tensor1).to(device),
|
| 114 |
+
list_to_torch_tensor(tensor2).to(device),
|
| 115 |
+
list_to_torch_tensor(tensor3).to(device),
|
| 116 |
]
|
| 117 |
|
| 118 |
if n_tensors == 15:
|
|
|
|
| 136 |
tensor4.append(flattened_output[i + 15])
|
| 137 |
|
| 138 |
codes = [
|
| 139 |
+
list_to_torch_tensor(tensor1).to(device),
|
| 140 |
+
list_to_torch_tensor(tensor2).to(device),
|
| 141 |
+
list_to_torch_tensor(tensor3).to(device),
|
| 142 |
+
list_to_torch_tensor(tensor4).to(device),
|
| 143 |
]
|
| 144 |
|
| 145 |
return codes
|