Spaces:
Running
Running
Shiyu Zhao
commited on
Commit
·
743ad0c
1
Parent(s):
d6d7173
Update space
Browse files
app.py
CHANGED
|
@@ -15,10 +15,10 @@ from huggingface_hub import HfApi
|
|
| 15 |
import shutil
|
| 16 |
import tempfile
|
| 17 |
import time
|
| 18 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 19 |
from queue import Queue
|
| 20 |
import threading
|
| 21 |
-
|
| 22 |
from stark_qa import load_qa
|
| 23 |
from stark_qa.evaluator import Evaluator
|
| 24 |
|
|
@@ -32,150 +32,113 @@ try:
|
|
| 32 |
except Exception as e:
|
| 33 |
raise RuntimeError(f"Failed to initialize HuggingFace Hub storage: {e}")
|
| 34 |
|
|
|
|
|
|
|
| 35 |
|
| 36 |
def process_single_instance(args):
|
| 37 |
-
"""Process a single instance with progress tracking"""
|
| 38 |
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
|
|
|
|
| 39 |
try:
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
try:
|
| 46 |
-
pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item()
|
| 47 |
-
except Exception as e:
|
| 48 |
-
print(f"Error getting pred_rank for query_id {query_id}: {str(e)}")
|
| 49 |
-
raise
|
| 50 |
-
|
| 51 |
-
if isinstance(pred_rank, str):
|
| 52 |
pred_rank = eval(pred_rank)
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
result["idx"], result["query_id"] = idx, query_id
|
| 59 |
-
return result
|
| 60 |
-
except Exception as e:
|
| 61 |
-
print(f"Error in process_single_instance for idx {idx}: {str(e)}")
|
| 62 |
-
raise
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
def compute_metrics(csv_path: str, dataset: str, split: str,
|
| 66 |
candidate_ids_dict = {
|
| 67 |
'amazon': [i for i in range(957192)],
|
| 68 |
'mag': [i for i in range(1172724, 1872968)],
|
| 69 |
'prime': [i for i in range(129375)]
|
| 70 |
}
|
| 71 |
-
|
| 72 |
try:
|
|
|
|
| 73 |
eval_csv = pd.read_csv(csv_path)
|
| 74 |
if 'query_id' not in eval_csv.columns:
|
| 75 |
raise ValueError('No `query_id` column found in the submitted csv.')
|
| 76 |
if 'pred_rank' not in eval_csv.columns:
|
| 77 |
raise ValueError('No `pred_rank` column found in the submitted csv.')
|
| 78 |
-
|
|
|
|
| 79 |
eval_csv = eval_csv[['query_id', 'pred_rank']]
|
| 80 |
|
|
|
|
| 81 |
if dataset not in candidate_ids_dict:
|
| 82 |
raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.")
|
| 83 |
if split not in ['test', 'test-0.1', 'human_generated_eval']:
|
| 84 |
raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].")
|
| 85 |
|
| 86 |
-
#
|
| 87 |
evaluator = Evaluator(candidate_ids_dict[dataset])
|
| 88 |
eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
|
| 89 |
-
|
|
|
|
| 90 |
qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
|
| 91 |
split_idx = qa_dataset.get_idx_split()
|
| 92 |
all_indices = split_idx[split].tolist()
|
| 93 |
-
print(f"Dataset loaded, processing {len(all_indices)} instances")
|
| 94 |
-
|
| 95 |
-
# results_list = []
|
| 96 |
-
# query_ids = []
|
| 97 |
-
|
| 98 |
-
# # Prepare args for each worker
|
| 99 |
-
# args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices]
|
| 100 |
|
| 101 |
-
#
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
# results_list.append(result)
|
| 106 |
-
# query_ids.append(result['query_id'])
|
| 107 |
|
| 108 |
-
#
|
| 109 |
-
|
| 110 |
-
# final_results = {
|
| 111 |
-
# metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics
|
| 112 |
-
# }
|
| 113 |
-
# return final_result
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
with ThreadPoolExecutor(max_workers=num_workers) as executor:
|
| 122 |
-
futures = [
|
| 123 |
-
executor.submit(process_single_instance,
|
| 124 |
-
(idx, eval_csv, qa_dataset, evaluator, eval_metrics))
|
| 125 |
-
for idx in batch_indices
|
| 126 |
-
]
|
| 127 |
-
for future in futures:
|
| 128 |
result = future.result()
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
with tqdm(total=len(all_indices), desc="Processing instances") as pbar:
|
| 140 |
-
completed = 0
|
| 141 |
-
while completed < len(all_indices):
|
| 142 |
-
progress_queue.get()
|
| 143 |
-
completed += 1
|
| 144 |
-
pbar.update(1)
|
| 145 |
-
|
| 146 |
-
# Start progress monitoring thread
|
| 147 |
-
progress_thread = threading.Thread(target=update_progress)
|
| 148 |
-
progress_thread.start()
|
| 149 |
-
|
| 150 |
-
# Process batches
|
| 151 |
-
for i in range(0, len(all_indices), batch_size):
|
| 152 |
-
batch_indices = all_indices[i:min(i + batch_size, len(all_indices))]
|
| 153 |
-
batch_results = process_batch(batch_indices)
|
| 154 |
-
results_list.extend(batch_results)
|
| 155 |
-
remaining_indices -= len(batch_indices)
|
| 156 |
-
print(f"\rBatch {i//batch_size + 1}/{total_batches} completed. Remaining: {remaining_indices}")
|
| 157 |
-
|
| 158 |
-
progress_thread.join()
|
| 159 |
-
|
| 160 |
-
# Compute final metrics
|
| 161 |
-
if not results_list:
|
| 162 |
-
raise ValueError("No valid results were produced")
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
elapsed_time = time.time() - start_time
|
| 171 |
-
print(f"\nMetrics computation completed in {elapsed_time:.2f} seconds")
|
| 172 |
return final_results
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
except Exception as error:
|
| 175 |
-
|
| 176 |
-
error_msg = f"Error in compute_metrics ({elapsed_time:.2f}s): {str(error)}"
|
| 177 |
-
print(error_msg)
|
| 178 |
-
return error_msg
|
| 179 |
|
| 180 |
|
| 181 |
|
|
|
|
| 15 |
import shutil
|
| 16 |
import tempfile
|
| 17 |
import time
|
| 18 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 19 |
from queue import Queue
|
| 20 |
import threading
|
| 21 |
+
from threading import Lock
|
| 22 |
from stark_qa import load_qa
|
| 23 |
from stark_qa.evaluator import Evaluator
|
| 24 |
|
|
|
|
| 32 |
except Exception as e:
|
| 33 |
raise RuntimeError(f"Failed to initialize HuggingFace Hub storage: {e}")
|
| 34 |
|
| 35 |
+
# Global lock for thread-safe operations
|
| 36 |
+
result_lock = Lock()
|
| 37 |
|
| 38 |
def process_single_instance(args):
|
|
|
|
| 39 |
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
|
| 40 |
+
query, query_id, answer_ids, meta_info = qa_dataset[idx]
|
| 41 |
try:
|
| 42 |
+
# Using loc instead of direct boolean indexing for thread safety
|
| 43 |
+
with result_lock:
|
| 44 |
+
matching_rows = eval_csv.loc[eval_csv['query_id'] == query_id]
|
| 45 |
+
if matching_rows.empty:
|
| 46 |
+
raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.')
|
| 47 |
+
pred_rank = matching_rows['pred_rank'].iloc[0]
|
| 48 |
+
except IndexError:
|
| 49 |
+
raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.')
|
| 50 |
+
except Exception as e:
|
| 51 |
+
raise RuntimeError(f'Unexpected error occurred while fetching prediction rank for query_id={query_id}: {e}')
|
| 52 |
+
|
| 53 |
+
if isinstance(pred_rank, str):
|
| 54 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
pred_rank = eval(pred_rank)
|
| 56 |
+
except SyntaxError as e:
|
| 57 |
+
raise ValueError(f'Failed to parse pred_rank as a list for query_id={query_id}: {e}')
|
| 58 |
+
|
| 59 |
+
if not isinstance(pred_rank, list):
|
| 60 |
+
raise TypeError(f'Error when processing query_id={query_id}, expected pred_rank to be a list but got {type(pred_rank)}.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))}
|
| 63 |
+
answer_ids = torch.LongTensor(answer_ids)
|
| 64 |
+
|
| 65 |
+
# Evaluate metrics
|
| 66 |
+
result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics)
|
| 67 |
+
result["idx"], result["query_id"] = idx, query_id
|
| 68 |
+
return result
|
| 69 |
|
| 70 |
+
def compute_metrics(csv_path: str, dataset: str, split: str, num_threads: int = 4):
|
| 71 |
candidate_ids_dict = {
|
| 72 |
'amazon': [i for i in range(957192)],
|
| 73 |
'mag': [i for i in range(1172724, 1872968)],
|
| 74 |
'prime': [i for i in range(129375)]
|
| 75 |
}
|
| 76 |
+
|
| 77 |
try:
|
| 78 |
+
# Read and validate CSV
|
| 79 |
eval_csv = pd.read_csv(csv_path)
|
| 80 |
if 'query_id' not in eval_csv.columns:
|
| 81 |
raise ValueError('No `query_id` column found in the submitted csv.')
|
| 82 |
if 'pred_rank' not in eval_csv.columns:
|
| 83 |
raise ValueError('No `pred_rank` column found in the submitted csv.')
|
| 84 |
+
|
| 85 |
+
# Filter required columns
|
| 86 |
eval_csv = eval_csv[['query_id', 'pred_rank']]
|
| 87 |
|
| 88 |
+
# Validate input parameters
|
| 89 |
if dataset not in candidate_ids_dict:
|
| 90 |
raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.")
|
| 91 |
if split not in ['test', 'test-0.1', 'human_generated_eval']:
|
| 92 |
raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].")
|
| 93 |
|
| 94 |
+
# Initialize evaluator and metrics
|
| 95 |
evaluator = Evaluator(candidate_ids_dict[dataset])
|
| 96 |
eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
|
| 97 |
+
|
| 98 |
+
# Load dataset and get split indices
|
| 99 |
qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
|
| 100 |
split_idx = qa_dataset.get_idx_split()
|
| 101 |
all_indices = split_idx[split].tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
# Thread-safe containers
|
| 104 |
+
results_list = []
|
| 105 |
+
query_ids = []
|
| 106 |
+
results_lock = Lock()
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
# Prepare args for each thread
|
| 109 |
+
args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
# Process using threads
|
| 112 |
+
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
| 113 |
+
futures = [executor.submit(process_single_instance, arg) for arg in args]
|
| 114 |
+
|
| 115 |
+
for future in tqdm(as_completed(futures), total=len(futures)):
|
| 116 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
result = future.result()
|
| 118 |
+
with results_lock:
|
| 119 |
+
results_list.append(result)
|
| 120 |
+
query_ids.append(result['query_id'])
|
| 121 |
+
except Exception as e:
|
| 122 |
+
print(f"Error processing instance: {str(e)}")
|
| 123 |
+
|
| 124 |
+
# Concatenate results and compute final metrics
|
| 125 |
+
with result_lock:
|
| 126 |
+
results_df = pd.DataFrame(results_list)
|
| 127 |
+
eval_csv = pd.concat([eval_csv, results_df], ignore_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
+
final_results = {
|
| 130 |
+
metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric])
|
| 131 |
+
for metric in eval_metrics
|
| 132 |
+
}
|
| 133 |
+
|
|
|
|
|
|
|
|
|
|
| 134 |
return final_results
|
| 135 |
|
| 136 |
+
except pd.errors.EmptyDataError:
|
| 137 |
+
return "Error: The CSV file is empty or could not be read. Please check the file and try again."
|
| 138 |
+
except FileNotFoundError:
|
| 139 |
+
return f"Error: The file {csv_path} could not be found. Please check the file path and try again."
|
| 140 |
except Exception as error:
|
| 141 |
+
return f"{error}"
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
|
| 144 |
|