sample-1 / app.py
smugala's picture
Update app.py
e517114 verified
raw
history blame
830 Bytes
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler
import joblib
# Load Dataset
data = pd.read_csv(load_dataset("nikesh66/Sarcasm-dataset"))
data['user_feature'] = data['user_feature'].fillna(0)
from datasets import load_dataset
# Preprocessing
text_vectorizer = TfidfVectorizer(max_features=5000, stop_words='english')
scaler = StandardScaler()
preprocessor = ColumnTransformer(
transformers=[
('text', text_vectorizer, 'text'),
('user_features', scaler, ['user_feature']),
]
)
# Model