Spaces:
Sleeping
Sleeping
| import torch, os, traceback, sys, warnings, shutil, numpy as np | |
| import gradio as gr | |
| import librosa | |
| import asyncio | |
| import rarfile | |
| import edge_tts | |
| import yt_dlp | |
| import ffmpeg | |
| import gdown | |
| import subprocess | |
| import wave | |
| import soundfile as sf | |
| from scipy.io import wavfile | |
| from datetime import datetime | |
| from urllib.parse import urlparse | |
| from mega import Mega | |
| from flask import Flask, request, jsonify, send_file,session,render_template | |
| import base64 | |
| import tempfile | |
| import threading | |
| import hashlib | |
| import os | |
| import werkzeug | |
| from pydub import AudioSegment | |
| import uuid | |
| from threading import Semaphore | |
| from threading import Lock | |
| from multiprocessing import Process, SimpleQueue, set_start_method,get_context | |
| from queue import Empty | |
| app = Flask(__name__) | |
| app.secret_key = 'smjain_6789' | |
| now_dir = os.getcwd() | |
| cpt={} | |
| tmp = os.path.join(now_dir, "TEMP") | |
| shutil.rmtree(tmp, ignore_errors=True) | |
| os.makedirs(tmp, exist_ok=True) | |
| os.environ["TEMP"] = tmp | |
| split_model="htdemucs" | |
| convert_voice_lock = Lock() | |
| # Define the maximum number of concurrent requests | |
| MAX_CONCURRENT_REQUESTS = 2 # Adjust this number as needed | |
| # Initialize the semaphore with the maximum number of concurrent requests | |
| request_semaphore = Semaphore(MAX_CONCURRENT_REQUESTS) | |
| #set_start_method('spawn', force=True) | |
| from lib.infer_pack.models import ( | |
| SynthesizerTrnMs256NSFsid, | |
| SynthesizerTrnMs256NSFsid_nono, | |
| SynthesizerTrnMs768NSFsid, | |
| SynthesizerTrnMs768NSFsid_nono, | |
| ) | |
| from fairseq import checkpoint_utils | |
| from vc_infer_pipeline import VC | |
| from config import Config | |
| config = Config() | |
| tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) | |
| voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list] | |
| hubert_model = None | |
| f0method_mode = ["pm", "harvest", "crepe"] | |
| f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)" | |
| def hash_array(array): | |
| # Ensure the array is in a consistent byte format | |
| array_bytes = array.tobytes() | |
| # Create a hash object (using SHA256 for example) | |
| hash_obj = hashlib.sha256(array_bytes) | |
| # Get the hexadecimal digest of the array | |
| hash_hex = hash_obj.hexdigest() | |
| return hash_hex | |
| def hash_array1(arr): | |
| arr_str = np.array2string(arr) | |
| return hashlib.md5(arr_str.encode()).hexdigest() | |
| if os.path.isfile("rmvpe.pt"): | |
| f0method_mode.insert(2, "rmvpe") | |
| f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)" | |
| def load_hubert(): | |
| global hubert_model | |
| models, _, _ = checkpoint_utils.load_model_ensemble_and_task( | |
| ["hubert_base.pt"], | |
| suffix="", | |
| ) | |
| hubert_model = models[0] | |
| hubert_model = hubert_model.to(config.device) | |
| if config.is_half: | |
| hubert_model = hubert_model.half() | |
| else: | |
| hubert_model = hubert_model.float() | |
| hubert_model.eval() | |
| load_hubert() | |
| weight_root = "weights" | |
| index_root = "weights/index" | |
| weights_model = [] | |
| weights_index = [] | |
| for _, _, model_files in os.walk(weight_root): | |
| for file in model_files: | |
| if file.endswith(".pth"): | |
| weights_model.append(file) | |
| for _, _, index_files in os.walk(index_root): | |
| for file in index_files: | |
| if file.endswith('.index') and "trained" not in file: | |
| weights_index.append(os.path.join(index_root, file)) | |
| def check_models(): | |
| weights_model = [] | |
| weights_index = [] | |
| for _, _, model_files in os.walk(weight_root): | |
| for file in model_files: | |
| if file.endswith(".pth"): | |
| weights_model.append(file) | |
| for _, _, index_files in os.walk(index_root): | |
| for file in index_files: | |
| if file.endswith('.index') and "trained" not in file: | |
| weights_index.append(os.path.join(index_root, file)) | |
| return ( | |
| gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]), | |
| gr.Dropdown.update(choices=sorted(weights_index)) | |
| ) | |
| def clean(): | |
| return ( | |
| gr.Dropdown.update(value=""), | |
| gr.Slider.update(visible=False) | |
| ) | |
| # Function to delete files | |
| def cleanup_files(file_paths): | |
| for path in file_paths: | |
| try: | |
| os.remove(path) | |
| print(f"Deleted {path}") | |
| except Exception as e: | |
| print(f"Error deleting {path}: {e}") | |
| processed_audio_storage = {} | |
| def api_convert_voice(): | |
| acquired = request_semaphore.acquire(blocking=False) | |
| if not acquired: | |
| return jsonify({"error": "Too many requests, please try again later"}), 429 | |
| try: | |
| #if session.get('submitted'): | |
| # return jsonify({"error": "Form already submitted"}), 400 | |
| # Process the form here... | |
| # Set the flag indicating the form has been submitted | |
| #session['submitted'] = True | |
| print(request.form) | |
| print(request.files) | |
| spk_id = request.form['spk_id']+'.pth' | |
| voice_transform = request.form['voice_transform'] | |
| # The file part | |
| if 'file' not in request.files: | |
| return jsonify({"error": "No file part"}), 400 | |
| file = request.files['file'] | |
| if file.filename == '': | |
| return jsonify({"error": "No selected file"}), 400 | |
| #created_files = [] | |
| # Save the file to a temporary path | |
| unique_id = str(uuid.uuid4()) | |
| print(unique_id) | |
| filename = werkzeug.utils.secure_filename(file.filename) | |
| input_audio_path = os.path.join(tmp, f"{spk_id}_input_audio_{unique_id}.{filename.split('.')[-1]}") | |
| file.save(input_audio_path) | |
| #created_files.append(input_audio_path) | |
| #split audio | |
| cut_vocal_and_inst(input_audio_path,spk_id,unique_id) | |
| print("audio splitting performed") | |
| vocal_path = f"output/{spk_id}_{unique_id}/{split_model}/{spk_id}_input_audio_{unique_id}/vocals.wav" | |
| inst = f"output/{spk_id}_{unique_id}/{split_model}/{spk_id}_input_audio_{unique_id}/no_vocals.wav" | |
| print("*****before making call to convert ", unique_id) | |
| #output_queue = SimpleQueue() | |
| ctx = get_context('spawn') | |
| output_queue = ctx.Queue() | |
| # Create and start the process | |
| p = ctx.Process(target=worker, args=(spk_id, vocal_path, voice_transform, unique_id, output_queue,)) | |
| p.start() | |
| # Wait for the process to finish and get the result | |
| p.join() | |
| print("*******waiting for process to complete ") | |
| try: | |
| output_path = output_queue.get(timeout=10) # Wait for 10 seconds | |
| print("output path of converted voice", output_path) | |
| except Empty: | |
| print("Queue was empty or worker did not complete in time") | |
| output_path = output_queue.get() | |
| #if isinstance(output_path, Exception): | |
| # print("Exception in worker:", output_path) | |
| #else: | |
| # print("output path of converted voice", output_path) | |
| #output_path = convert_voice(spk_id, vocal_path, voice_transform,unique_id) | |
| output_path1= combine_vocal_and_inst(output_path,inst,unique_id) | |
| processed_audio_storage[unique_id] = output_path1 | |
| session['processed_audio_id'] = unique_id | |
| print(output_path1) | |
| #created_files.extend([vocal_path, inst, output_path]) | |
| return jsonify({"message": "File processed successfully", "audio_id": unique_id}), 200 | |
| finally: | |
| request_semaphore.release() | |
| #if os.path.exists(output_path1): | |
| # return send_file(output_path1, as_attachment=True) | |
| #else: | |
| # return jsonify({"error": "File not found."}), 404 | |
| def convert_voice_thread_safe(spk_id, vocal_path, voice_transform, unique_id): | |
| with convert_voice_lock: | |
| return convert_voice(spk_id, vocal_path, voice_transform, unique_id) | |
| def get_vc_safe(sid, to_return_protect0): | |
| with convert_voice_lock: | |
| return get_vc(sid, to_return_protect0) | |
| def upload_form(): | |
| return render_template('ui.html') | |
| def get_processed_audio(audio_id): | |
| # Retrieve the path from temporary storage or session | |
| if audio_id in processed_audio_storage: | |
| file_path = processed_audio_storage[audio_id] | |
| return send_file(file_path, as_attachment=True) | |
| return jsonify({"error": "File not found."}), 404 | |
| def worker(spk_id, input_audio_path, voice_transform, unique_id, output_queue): | |
| try: | |
| output_audio_path = convert_voice(spk_id, input_audio_path, voice_transform, unique_id) | |
| print("output in worker for audio file", output_audio_path) | |
| output_queue.put(output_audio_path) | |
| print("added to output queue") | |
| except Exception as e: | |
| print("exception in adding to queue") | |
| output_queue.put(e) # Send the exception to the main process for debugging | |
| def convert_voice(spk_id, input_audio_path, voice_transform,unique_id): | |
| get_vc(spk_id,0.5) | |
| print("*****before makinf call to vc ", unique_id) | |
| output_audio_path = vc_single( | |
| sid=0, | |
| input_audio_path=input_audio_path, | |
| f0_up_key=voice_transform, # Assuming voice_transform corresponds to f0_up_key | |
| f0_file=None , | |
| f0_method="rmvpe", | |
| file_index=spk_id, # Assuming file_index_path corresponds to file_index | |
| index_rate=0.75, | |
| filter_radius=3, | |
| resample_sr=0, | |
| rms_mix_rate=0.25, | |
| protect=0.33, # Adjusted from protect_rate to protect to match the function signature, | |
| unique_id=unique_id | |
| ) | |
| print(output_audio_path) | |
| return output_audio_path | |
| def cut_vocal_and_inst(audio_path,spk_id,unique_id): | |
| vocal_path = "output/result/audio.wav" | |
| os.makedirs("output/result", exist_ok=True) | |
| #wavfile.write(vocal_path, audio_data[0], audio_data[1]) | |
| #logs.append("Starting the audio splitting process...") | |
| #yield "\n".join(logs), None, None | |
| print("before executing splitter") | |
| command = f"demucs --two-stems=vocals -n {split_model} {audio_path} -o output/{spk_id}_{unique_id}" | |
| env = os.environ.copy() | |
| # Add or modify the environment variable for this subprocess | |
| env["CUDA_VISIBLE_DEVICES"] = "0" | |
| #result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True) | |
| result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) | |
| if result.returncode != 0: | |
| print("Demucs process failed:", result.stderr) | |
| else: | |
| print("Demucs process completed successfully.") | |
| print("after executing splitter") | |
| #for line in result.stdout: | |
| # logs.append(line) | |
| # yield "\n".join(logs), None, None | |
| print(result.stdout) | |
| vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav" | |
| inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav" | |
| #logs.append("Audio splitting complete.") | |
| def combine_vocal_and_inst(vocal_path, inst_path, output_path): | |
| vocal_volume=1 | |
| inst_volume=1 | |
| os.makedirs("output/result", exist_ok=True) | |
| # Assuming vocal_path and inst_path are now directly passed as arguments | |
| output_path = f"output/result/{output_path}.mp3" | |
| #command = f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame "{output_path}"' | |
| #command=f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex "amix=inputs=2:duration=longest" -b:a 320k -c:a libmp3lame "{output_path}"' | |
| # Load the audio files | |
| print(vocal_path) | |
| print(inst_path) | |
| vocal = AudioSegment.from_file(vocal_path) | |
| instrumental = AudioSegment.from_file(inst_path) | |
| # Overlay the vocal track on top of the instrumental track | |
| combined = vocal.overlay(instrumental) | |
| # Export the result | |
| combined.export(output_path, format="mp3") | |
| #result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
| return output_path | |
| def vc_single( | |
| sid, | |
| input_audio_path, | |
| f0_up_key, | |
| f0_file, | |
| f0_method, | |
| file_index, | |
| index_rate, | |
| filter_radius, | |
| resample_sr, | |
| rms_mix_rate, | |
| protect, | |
| unique_id | |
| ): # spk_item, input_audio0, vc_transform0,f0_file,f0method0 | |
| global tgt_sr, net_g, vc, hubert_model, version, cpt | |
| print("***** in vc ", unique_id) | |
| try: | |
| logs = [] | |
| print(f"Converting...") | |
| audio, sr = librosa.load(input_audio_path, sr=16000, mono=True) | |
| print(f"found audio ") | |
| f0_up_key = int(f0_up_key) | |
| times = [0, 0, 0] | |
| if hubert_model == None: | |
| load_hubert() | |
| print("loaded hubert") | |
| if_f0 = 1 | |
| audio_opt = vc.pipeline( | |
| hubert_model, | |
| net_g, | |
| 0, | |
| audio, | |
| input_audio_path, | |
| times, | |
| f0_up_key, | |
| f0_method, | |
| file_index, | |
| # file_big_npy, | |
| index_rate, | |
| if_f0, | |
| filter_radius, | |
| tgt_sr, | |
| resample_sr, | |
| rms_mix_rate, | |
| version, | |
| protect, | |
| f0_file=f0_file | |
| ) | |
| hash_val = hash_array1(audio_opt) | |
| # Get the current thread's name or ID | |
| thread_name = threading.current_thread().name | |
| print(f"Thread {thread_name}: Hash {hash_val}") | |
| sample_and_print(audio_opt,thread_name) | |
| # Print the hash and thread information | |
| if resample_sr >= 16000 and tgt_sr != resample_sr: | |
| tgt_sr = resample_sr | |
| index_info = ( | |
| "Using index:%s." % file_index | |
| if os.path.exists(file_index) | |
| else "Index not used." | |
| ) | |
| save_audio_with_thread_id(audio_opt,tgt_sr) | |
| print("writing to FS") | |
| #output_file_path = os.path.join("output", f"converted_audio_{sid}.wav") # Adjust path as needed | |
| # Assuming 'unique_id' is passed to convert_voice function along with 'sid' | |
| print("***** before writing to file outout ", unique_id) | |
| output_file_path = os.path.join("output", f"converted_audio_{sid}_{unique_id}.wav") # Adjust path as needed | |
| print("******* output file path ",output_file_path) | |
| os.makedirs(os.path.dirname(output_file_path), exist_ok=True) # Create the output directory if it doesn't exist | |
| print("create dir") | |
| # Save the audio file using the target sampling rate | |
| sf.write(output_file_path, audio_opt, tgt_sr) | |
| print("wrote to FS") | |
| # Return the path to the saved file along with any other information | |
| return output_file_path | |
| except: | |
| info = traceback.format_exc() | |
| return info, (None, None) | |
| def save_audio_with_thread_id(audio_opt, tgt_sr,output_dir="output"): | |
| # Ensure the output directory exists | |
| os.makedirs(output_dir, exist_ok=True) | |
| # Get the current thread ID or name | |
| thread_id = threading.current_thread().name | |
| # Construct the filename using the thread ID | |
| filename = f"audio_{thread_id}.wav" | |
| output_path = os.path.join(output_dir, filename) | |
| # Assuming the target sample rate is defined elsewhere; replace as necessary | |
| #tgt_sr = 16000 # Example sample rate, adjust according to your needs | |
| # Write the audio file | |
| sf.write(output_path, audio_opt, tgt_sr) | |
| print(f"Saved {output_path}") | |
| def sample_and_print(array, thread_name): | |
| # Ensure the array has more than 10 elements; otherwise, use the array length | |
| num_samples = 10 if len(array) > 10 else len(array) | |
| # Calculate indices to sample; spread them evenly across the array | |
| indices = np.linspace(0, len(array) - 1, num=num_samples, dtype=int) | |
| # Sample elements | |
| sampled_elements = array[indices] | |
| # Print sampled elements with thread ID | |
| print(f"Thread {thread_name}: Sampled Elements: {sampled_elements}") | |
| def get_vc(sid, to_return_protect0): | |
| global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index | |
| if sid == "" or sid == []: | |
| global hubert_model | |
| if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 | |
| print("clean_empty_cache") | |
| del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt | |
| hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| ###楼下不这么折腾清理不干净 | |
| if_f0 = cpt[sid].get("f0", 1) | |
| version = cpt[sid].get("version", "v1") | |
| if version == "v1": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs256NSFsid( | |
| *cpt[sid]["config"], is_half=config.is_half | |
| ) | |
| else: | |
| net_g = SynthesizerTrnMs256NSFsid_nono(*cpt[sid]["config"]) | |
| elif version == "v2": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs768NSFsid( | |
| *cpt[sid]["config"], is_half=config.is_half | |
| ) | |
| else: | |
| net_g = SynthesizerTrnMs768NSFsid_nono(*cpt[sid]["config"]) | |
| del net_g, cpt | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| cpt = None | |
| return ( | |
| gr.Slider.update(maximum=2333, visible=False), | |
| gr.Slider.update(visible=True), | |
| gr.Dropdown.update(choices=sorted(weights_index), value=""), | |
| gr.Markdown.update(value="# <center> No model selected") | |
| ) | |
| print(f"Loading {sid} model...") | |
| selected_model = sid[:-4] | |
| cpt[sid] = torch.load(os.path.join(weight_root, sid), map_location="cpu") | |
| tgt_sr = cpt[sid]["config"][-1] | |
| cpt[sid]["config"][-3] = cpt[sid]["weight"]["emb_g.weight"].shape[0] | |
| if_f0 = cpt[sid].get("f0", 1) | |
| if if_f0 == 0: | |
| to_return_protect0 = { | |
| "visible": False, | |
| "value": 0.5, | |
| "__type__": "update", | |
| } | |
| else: | |
| to_return_protect0 = { | |
| "visible": True, | |
| "value": to_return_protect0, | |
| "__type__": "update", | |
| } | |
| version = cpt[sid].get("version", "v1") | |
| if version == "v1": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs256NSFsid(*cpt[sid]["config"], is_half=config.is_half) | |
| else: | |
| net_g = SynthesizerTrnMs256NSFsid_nono(*cpt[sid]["config"]) | |
| elif version == "v2": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs768NSFsid(*cpt[sid]["config"], is_half=config.is_half) | |
| else: | |
| net_g = SynthesizerTrnMs768NSFsid_nono(*cpt[sid]["config"]) | |
| del net_g.enc_q | |
| print(net_g.load_state_dict(cpt[sid]["weight"], strict=False)) | |
| net_g.eval().to(config.device) | |
| if config.is_half: | |
| net_g = net_g.half() | |
| else: | |
| net_g = net_g.float() | |
| vc = VC(tgt_sr, config) | |
| n_spk = cpt[sid]["config"][-3] | |
| weights_index = [] | |
| for _, _, index_files in os.walk(index_root): | |
| for file in index_files: | |
| if file.endswith('.index') and "trained" not in file: | |
| weights_index.append(os.path.join(index_root, file)) | |
| if weights_index == []: | |
| selected_index = gr.Dropdown.update(value="") | |
| else: | |
| selected_index = gr.Dropdown.update(value=weights_index[0]) | |
| for index, model_index in enumerate(weights_index): | |
| if selected_model in model_index: | |
| selected_index = gr.Dropdown.update(value=weights_index[index]) | |
| break | |
| return ( | |
| gr.Slider.update(maximum=n_spk, visible=True), | |
| to_return_protect0, | |
| selected_index, | |
| gr.Markdown.update( | |
| f'## <center> {selected_model}\n'+ | |
| f'### <center> RVC {version} Model' | |
| ) | |
| ) | |
| if __name__ == '__main__': | |
| app.run(debug=False, port=5000,host='0.0.0.0') | |