Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| from unidepth.models.backbones import ConvNeXt, ConvNeXtV2, _make_dinov2_model | |
| class ModelWrap(nn.Module): | |
| def __init__(self, model) -> None: | |
| super().__init__() | |
| self.backbone = model | |
| def forward(self, x, *args, **kwargs): | |
| features = [] | |
| for layer in self.backbone.features: | |
| x = layer(x) | |
| features.append(x) | |
| return features | |
| def convnextv2_base(config, **kwargs): | |
| model = ConvNeXtV2( | |
| depths=[3, 3, 27, 3], | |
| dims=[128, 256, 512, 1024], | |
| output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
| use_checkpoint=config.get("use_checkpoint", False), | |
| **kwargs, | |
| ) | |
| url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt" | |
| state_dict = torch.hub.load_state_dict_from_url( | |
| url, map_location="cpu", progress=False | |
| )["model"] | |
| info = model.load_state_dict(state_dict, strict=False) | |
| print(info) | |
| return model | |
| def convnextv2_large(config, **kwargs): | |
| model = ConvNeXtV2( | |
| depths=[3, 3, 27, 3], | |
| dims=[192, 384, 768, 1536], | |
| output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
| use_checkpoint=config.get("use_checkpoint", False), | |
| **kwargs, | |
| ) | |
| url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt" | |
| state_dict = torch.hub.load_state_dict_from_url( | |
| url, map_location="cpu", progress=False | |
| )["model"] | |
| info = model.load_state_dict(state_dict, strict=False) | |
| print(info) | |
| return model | |
| def convnextv2_large_mae(config, **kwargs): | |
| model = ConvNeXtV2( | |
| depths=[3, 3, 27, 3], | |
| dims=[192, 384, 768, 1536], | |
| output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
| use_checkpoint=config.get("use_checkpoint", False), | |
| **kwargs, | |
| ) | |
| url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_large_1k_224_fcmae.pt" | |
| state_dict = torch.hub.load_state_dict_from_url( | |
| url, map_location="cpu", progress=False | |
| )["model"] | |
| info = model.load_state_dict(state_dict, strict=False) | |
| print(info) | |
| return model | |
| def convnextv2_huge(config, **kwargs): | |
| model = ConvNeXtV2( | |
| depths=[3, 3, 27, 3], | |
| dims=[352, 704, 1408, 2816], | |
| output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
| use_checkpoint=config.get("use_checkpoint", False), | |
| **kwargs, | |
| ) | |
| url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt" | |
| state_dict = torch.hub.load_state_dict_from_url( | |
| url, map_location="cpu", progress=False | |
| )["model"] | |
| info = model.load_state_dict(state_dict, strict=False) | |
| print(info) | |
| return model | |
| def convnextv2_huge_mae(config, **kwargs): | |
| model = ConvNeXtV2( | |
| depths=[3, 3, 27, 3], | |
| dims=[352, 704, 1408, 2816], | |
| output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
| use_checkpoint=config.get("use_checkpoint", False), | |
| **kwargs, | |
| ) | |
| url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_huge_1k_224_fcmae.pt" | |
| state_dict = torch.hub.load_state_dict_from_url( | |
| url, map_location="cpu", progress=False | |
| )["model"] | |
| info = model.load_state_dict(state_dict, strict=False) | |
| print(info) | |
| return model | |
| def convnext_large_pt(config, **kwargs): | |
| model = ConvNeXt( | |
| depths=[3, 3, 27, 3], | |
| dims=[192, 384, 768, 1536], | |
| output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
| use_checkpoint=config.get("use_checkpoint", False), | |
| **kwargs, | |
| ) | |
| from huggingface_hub import hf_hub_download | |
| from huggingface_hub.utils import disable_progress_bars | |
| from unidepth.models.backbones.convnext import HF_URL, checkpoint_filter_fn | |
| disable_progress_bars() | |
| repo_id, filename = HF_URL["convnext_large_pt"] | |
| state_dict = torch.load(hf_hub_download(repo_id=repo_id, filename=filename)) | |
| state_dict = checkpoint_filter_fn(state_dict, model) | |
| info = model.load_state_dict(state_dict, strict=False) | |
| print(info) | |
| return model | |
| def convnext_large(config, **kwargs): | |
| model = ConvNeXt( | |
| depths=[3, 3, 27, 3], | |
| dims=[192, 384, 768, 1536], | |
| output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
| use_checkpoint=config.get("use_checkpoint", False), | |
| drop_path_rate=config.get("drop_path", 0.0), | |
| **kwargs, | |
| ) | |
| return model | |
| def dinov2_vits14(config, pretrained: bool = True, **kwargs): | |
| """ | |
| DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset. | |
| """ | |
| vit = _make_dinov2_model( | |
| arch_name="vit_small", | |
| pretrained=config["pretrained"], | |
| output_idx=config.get("output_idx", [3, 6, 9, 12]), | |
| checkpoint=config.get("use_checkpoint", False), | |
| drop_path_rate=config.get("drop_path", 0.0), | |
| num_register_tokens=config.get("num_register_tokens", 0), | |
| use_norm=config.get("use_norm", False), | |
| export=config.get("export", False), | |
| interpolate_offset=config.get("interpolate_offset", 0.0), | |
| **kwargs, | |
| ) | |
| return vit | |
| def dinov2_vitb14(config, pretrained: bool = True, **kwargs): | |
| """ | |
| DINOv2 ViT-B/14 model (optionally) pretrained on the LVD-142M dataset. | |
| """ | |
| vit = _make_dinov2_model( | |
| arch_name="vit_base", | |
| pretrained=config["pretrained"], | |
| output_idx=config.get("output_idx", [3, 6, 9, 12]), | |
| checkpoint=config.get("use_checkpoint", False), | |
| drop_path_rate=config.get("drop_path", 0.0), | |
| num_register_tokens=config.get("num_register_tokens", 0), | |
| use_norm=config.get("use_norm", False), | |
| export=config.get("export", False), | |
| interpolate_offset=config.get("interpolate_offset", 0.0), | |
| **kwargs, | |
| ) | |
| return vit | |
| def dinov2_vitl14(config, pretrained: str = "", **kwargs): | |
| """ | |
| DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset. | |
| """ | |
| vit = _make_dinov2_model( | |
| arch_name="vit_large", | |
| pretrained=config["pretrained"], | |
| output_idx=config.get("output_idx", [5, 12, 18, 24]), | |
| checkpoint=config.get("use_checkpoint", False), | |
| drop_path_rate=config.get("drop_path", 0.0), | |
| num_register_tokens=config.get("num_register_tokens", 0), | |
| use_norm=config.get("use_norm", False), | |
| export=config.get("export", False), | |
| interpolate_offset=config.get("interpolate_offset", 0.0), | |
| **kwargs, | |
| ) | |
| return vit | |