Spaces:
Runtime error
Runtime error
| """ | |
| Author: Luigi Piccinelli | |
| Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/) | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange | |
| from .convnext import CvnxtBlock | |
| class ConvUpsample(nn.Module): | |
| def __init__( | |
| self, | |
| hidden_dim, | |
| num_layers: int = 2, | |
| expansion: int = 4, | |
| layer_scale: float = 1.0, | |
| kernel_size: int = 7, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.convs = nn.ModuleList([]) | |
| for _ in range(num_layers): | |
| self.convs.append( | |
| CvnxtBlock( | |
| hidden_dim, | |
| kernel_size=kernel_size, | |
| expansion=expansion, | |
| layer_scale=layer_scale, | |
| ) | |
| ) | |
| self.up = nn.Sequential( | |
| nn.Conv2d(hidden_dim, hidden_dim // 2, kernel_size=1, padding=0), | |
| nn.UpsamplingBilinear2d(scale_factor=2), | |
| nn.Conv2d(hidden_dim // 2, hidden_dim // 2, kernel_size=3, padding=1), | |
| ) | |
| def forward(self, x: torch.Tensor): | |
| for conv in self.convs: | |
| x = conv(x) | |
| x = self.up(x) | |
| x = rearrange(x, "b c h w -> b (h w) c") | |
| return x | |
| class ConvUpsampleShuffle(nn.Module): | |
| def __init__( | |
| self, | |
| hidden_dim, | |
| num_layers: int = 2, | |
| expansion: int = 4, | |
| layer_scale: float = 1.0, | |
| kernel_size: int = 7, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.convs = nn.ModuleList([]) | |
| for _ in range(num_layers): | |
| self.convs.append( | |
| CvnxtBlock( | |
| hidden_dim, | |
| kernel_size=kernel_size, | |
| expansion=expansion, | |
| layer_scale=layer_scale, | |
| ) | |
| ) | |
| self.up = nn.Sequential( | |
| nn.PixelShuffle(2), | |
| nn.Conv2d(hidden_dim // 4, hidden_dim // 2, kernel_size=3, padding=1), | |
| ) | |
| def forward(self, x: torch.Tensor): | |
| for conv in self.convs: | |
| x = conv(x) | |
| x = self.up(x) | |
| x = rearrange(x, "b c h w -> b (h w) c") | |
| return x | |
| class ConvUpsampleShuffleResidual(nn.Module): | |
| def __init__( | |
| self, | |
| hidden_dim, | |
| num_layers: int = 2, | |
| expansion: int = 4, | |
| layer_scale: float = 1.0, | |
| kernel_size: int = 7, | |
| padding_mode: str = "zeros", | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.convs = nn.ModuleList([]) | |
| for _ in range(num_layers): | |
| self.convs.append( | |
| CvnxtBlock( | |
| hidden_dim, | |
| kernel_size=kernel_size, | |
| expansion=expansion, | |
| layer_scale=layer_scale, | |
| padding_mode=padding_mode, | |
| ) | |
| ) | |
| self.up = nn.Sequential( | |
| nn.PixelShuffle(2), | |
| nn.Conv2d( | |
| hidden_dim // 4, | |
| hidden_dim // 4, | |
| kernel_size=7, | |
| padding=3, | |
| padding_mode=padding_mode, | |
| groups=hidden_dim // 4, | |
| ), | |
| nn.ReLU(), | |
| nn.Conv2d( | |
| hidden_dim // 4, | |
| hidden_dim // 2, | |
| kernel_size=3, | |
| padding=1, | |
| padding_mode=padding_mode, | |
| ), | |
| ) | |
| self.residual = nn.Sequential( | |
| nn.Conv2d(hidden_dim, hidden_dim // 2, kernel_size=1, padding=0), | |
| nn.UpsamplingBilinear2d(scale_factor=2), | |
| ) | |
| def forward(self, x: torch.Tensor): | |
| for conv in self.convs: | |
| x = conv(x) | |
| x = self.up(x) + self.residual(x) | |
| x = rearrange(x, "b c h w -> b (h w) c") | |
| return x | |