Spaces:
Runtime error
Runtime error
| """ | |
| Author: Luigi Piccinelli | |
| Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/) | |
| """ | |
| from math import pi | |
| from typing import Optional | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange, repeat | |
| class PositionEmbeddingSine(nn.Module): | |
| def __init__( | |
| self, num_pos_feats=64, temperature=10000, normalize=False, scale=None | |
| ): | |
| super().__init__() | |
| self.num_pos_feats = num_pos_feats | |
| self.temperature = temperature | |
| self.normalize = normalize | |
| if scale is not None and normalize is False: | |
| raise ValueError("normalize should be True if scale is passed") | |
| if scale is None: | |
| scale = 2 * pi | |
| self.scale = scale | |
| def forward( | |
| self, x: torch.Tensor, mask: Optional[torch.Tensor] = None | |
| ) -> torch.Tensor: | |
| if mask is None: | |
| mask = torch.zeros( | |
| (x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool | |
| ) | |
| not_mask = ~mask | |
| y_embed = not_mask.cumsum(1, dtype=torch.float32) | |
| x_embed = not_mask.cumsum(2, dtype=torch.float32) | |
| if self.normalize: | |
| eps = 1e-6 | |
| y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale | |
| x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale | |
| dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) | |
| dim_t = self.temperature ** ( | |
| 2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats | |
| ) | |
| pos_x = x_embed[:, :, :, None] / dim_t | |
| pos_y = y_embed[:, :, :, None] / dim_t | |
| pos_x = torch.stack( | |
| (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 | |
| ).flatten(3) | |
| pos_y = torch.stack( | |
| (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 | |
| ).flatten(3) | |
| pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) | |
| return pos | |
| def __repr__(self, _repr_indent=4): | |
| head = "Positional encoding " + self.__class__.__name__ | |
| body = [ | |
| "num_pos_feats: {}".format(self.num_pos_feats), | |
| "temperature: {}".format(self.temperature), | |
| "normalize: {}".format(self.normalize), | |
| "scale: {}".format(self.scale), | |
| ] | |
| # _repr_indent = 4 | |
| lines = [head] + [" " * _repr_indent + line for line in body] | |
| return "\n".join(lines) | |
| class LearnedSinusoidalPosEmb(nn.Module): | |
| def __init__(self, dim): | |
| super().__init__() | |
| assert (dim % 2) == 0 | |
| half_dim = dim // 2 | |
| self.weights = nn.Parameter(torch.randn(half_dim)) | |
| def forward(self, x): | |
| x = rearrange(x, "b -> b 1") | |
| freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi | |
| fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) | |
| fouriered = torch.cat((x, fouriered), dim=-1) | |
| return fouriered | |
| def generate_fourier_features(x, max_freq=64, num_bands=16): | |
| x = x.unsqueeze(-1) | |
| device, dtype, orig_x = x.device, x.dtype, x | |
| scales = torch.linspace( | |
| -max_freq / 2, max_freq / 2, num_bands, device=device, dtype=dtype | |
| ) | |
| scales = scales[(*((None,) * (len(x.shape) - 1)), Ellipsis)] | |
| x = x * scales * pi | |
| x = torch.cat([x.sin(), x.cos()], dim=-1) | |
| x = torch.cat((x, orig_x), dim=-1) | |
| return x.flatten(-2) | |
| def broadcat(tensors, dim=-1): | |
| num_tensors = len(tensors) | |
| shape_lens = set(list(map(lambda t: len(t.shape), tensors))) | |
| assert len(shape_lens) == 1, "tensors must all have the same number of dimensions" | |
| shape_len = list(shape_lens)[0] | |
| dim = (dim + shape_len) if dim < 0 else dim | |
| dims = list(zip(*map(lambda t: list(t.shape), tensors))) | |
| expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] | |
| assert all( | |
| [*map(lambda t: len(set(t[1])) <= 2, expandable_dims)] | |
| ), "invalid dimensions for broadcastable concatentation" | |
| max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) | |
| expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) | |
| expanded_dims.insert(dim, (dim, dims[dim])) | |
| expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) | |
| tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) | |
| return torch.cat(tensors, dim=dim) | |
| def rotate_half(x): | |
| x = rearrange(x, "... (d r) -> ... d r", r=2) | |
| x1, x2 = x.unbind(dim=-1) | |
| x = torch.stack((-x2, x1), dim=-1) | |
| return rearrange(x, "... d r -> ... (d r)") | |
| class VisionRotaryEmbedding(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| pt_seq_len, | |
| ft_seq_len=None, | |
| custom_freqs=None, | |
| freqs_for="lang", | |
| theta=10000, | |
| max_freq=10, | |
| num_freqs=1, | |
| ): | |
| super().__init__() | |
| if custom_freqs: | |
| freqs = custom_freqs | |
| elif freqs_for == "lang": | |
| freqs = 1.0 / ( | |
| theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) | |
| ) | |
| elif freqs_for == "pixel": | |
| freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi | |
| elif freqs_for == "constant": | |
| freqs = torch.ones(num_freqs).float() | |
| else: | |
| raise ValueError(f"unknown modality {freqs_for}") | |
| if ft_seq_len is None: | |
| ft_seq_len = pt_seq_len | |
| t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len | |
| freqs_h = torch.einsum("..., f -> ... f", t, freqs) | |
| freqs_h = repeat(freqs_h, "... n -> ... (n r)", r=2) | |
| freqs_w = torch.einsum("..., f -> ... f", t, freqs) | |
| freqs_w = repeat(freqs_w, "... n -> ... (n r)", r=2) | |
| freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1) | |
| self.register_buffer("freqs_cos", freqs.cos()) | |
| self.register_buffer("freqs_sin", freqs.sin()) | |
| print("======== shape of rope freq", self.freqs_cos.shape, "========") | |
| def forward(self, t, start_index=0): | |
| rot_dim = self.freqs_cos.shape[-1] | |
| end_index = start_index + rot_dim | |
| assert ( | |
| rot_dim <= t.shape[-1] | |
| ), f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}" | |
| t_left, t, t_right = ( | |
| t[..., :start_index], | |
| t[..., start_index:end_index], | |
| t[..., end_index:], | |
| ) | |
| t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin) | |
| return torch.cat((t_left, t, t_right), dim=-1) | |
| class VisionRotaryEmbeddingFast(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| pt_seq_len, | |
| ft_seq_len=None, | |
| custom_freqs=None, | |
| freqs_for="lang", | |
| theta=10000, | |
| max_freq=10, | |
| num_freqs=1, | |
| ): | |
| super().__init__() | |
| if custom_freqs: | |
| freqs = custom_freqs | |
| elif freqs_for == "lang": | |
| freqs = 1.0 / ( | |
| theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) | |
| ) | |
| elif freqs_for == "pixel": | |
| freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi | |
| elif freqs_for == "constant": | |
| freqs = torch.ones(num_freqs).float() | |
| else: | |
| raise ValueError(f"unknown modality {freqs_for}") | |
| if ft_seq_len is None: | |
| ft_seq_len = pt_seq_len | |
| t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len | |
| freqs = torch.einsum("..., f -> ... f", t, freqs) | |
| freqs = repeat(freqs, "... n -> ... (n r)", r=2) | |
| freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim=-1) | |
| freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) | |
| freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) | |
| self.register_buffer("freqs_cos", freqs_cos) | |
| self.register_buffer("freqs_sin", freqs_sin) | |
| def forward(self, t): | |
| return t * self.freqs_cos + rotate_half(t) * self.freqs_sin | |