Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| from unidepth.utils.misc import default | |
| from .activation import SwiGLU | |
| class MLP(nn.Module): | |
| def __init__( | |
| self, | |
| input_dim: int, | |
| expansion: int = 4, | |
| dropout: float = 0.0, | |
| gated: bool = False, | |
| output_dim: int | None = None, | |
| ): | |
| super().__init__() | |
| if gated: | |
| expansion = int(expansion * 2 / 3) | |
| hidden_dim = int(input_dim * expansion) | |
| output_dim = default(output_dim, input_dim) | |
| self.norm = nn.LayerNorm(input_dim) | |
| self.proj1 = nn.Linear(input_dim, hidden_dim) | |
| self.proj2 = nn.Linear(hidden_dim, output_dim) | |
| self.act = nn.GELU() if not gated else SwiGLU() | |
| self.dropout = nn.Dropout(dropout) if dropout > 0.0 else nn.Identity() | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.norm(x) | |
| x = self.proj1(x) | |
| x = self.act(x) | |
| x = self.proj2(x) | |
| x = self.dropout(x) | |
| return x | |