Spaces:
Runtime error
Runtime error
| """ | |
| Author: Luigi Piccinelli | |
| Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/) | |
| """ | |
| from functools import partial | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange | |
| from .layer_scale import LayerScale | |
| from .mlp import MLP | |
| class SimpleAttention(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_heads: int = 4, | |
| dropout: float = 0.0, | |
| cosine: bool = False, | |
| context_dim: int | None = None, | |
| ): | |
| super().__init__() | |
| self.dropout = dropout | |
| self.num_heads = num_heads | |
| self.hidden_dim = dim | |
| context_dim = context_dim or dim | |
| self.kv = nn.Linear(context_dim, dim * 2, bias=False) | |
| self.q = nn.Linear(dim, dim, bias=False) | |
| self.norm_attnx = nn.LayerNorm(dim) | |
| self.norm_attnctx = nn.LayerNorm(context_dim) | |
| self.cosine = cosine | |
| self.out = nn.Linear(dim, dim) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| attn_bias: torch.Tensor | None = None, | |
| context: torch.Tensor | None = None, | |
| pos_embed: torch.Tensor | None = None, | |
| pos_embed_context: torch.Tensor | None = None, | |
| rope: nn.Module | None = None, | |
| ) -> torch.Tensor: | |
| context = x if context is None else context | |
| x = self.norm_attnx(x) | |
| context = self.norm_attnctx(context) | |
| k, v = rearrange( | |
| self.kv(context), "b n (kv h d) -> b h n d kv", h=self.num_heads, kv=2 | |
| ).unbind(dim=-1) | |
| q = rearrange(self.q(x), "b n (h d) -> b h n d", h=self.num_heads) | |
| if rope is not None: | |
| q = rope(q) | |
| k = rope(k) | |
| else: | |
| if pos_embed is not None: | |
| pos_embed = rearrange( | |
| pos_embed, "b n (h d) -> b h n d", h=self.num_heads | |
| ) | |
| q = q + pos_embed | |
| if pos_embed_context is not None: | |
| pos_embed_context = rearrange( | |
| pos_embed_context, "b n (h d) -> b h n d", h=self.num_heads | |
| ) | |
| k = k + pos_embed_context | |
| if self.cosine: | |
| q, k = map(partial(F.normalize, p=2, dim=-1), (q, k)) # cosine sim | |
| x = F.scaled_dot_product_attention( | |
| q, k, v, dropout_p=self.dropout, attn_mask=attn_bias | |
| ) | |
| x = rearrange(x, "b h n d -> b n (h d)") | |
| x = self.out(x) | |
| return x | |
| class AttentionBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_heads: int = 4, | |
| expansion: int = 4, | |
| dropout: float = 0.0, | |
| cosine: bool = False, | |
| gated: bool = False, | |
| layer_scale: float = 1.0, | |
| context_dim: int | None = None, | |
| ): | |
| super().__init__() | |
| self.dropout = dropout | |
| self.num_heads = num_heads | |
| self.hidden_dim = dim | |
| context_dim = context_dim or dim | |
| self.mlp = MLP(dim, expansion=expansion, dropout=dropout, gated=gated) | |
| self.kv = nn.Linear(context_dim, dim * 2) | |
| self.q = nn.Linear(dim, dim) | |
| self.norm_attnx = nn.LayerNorm(dim) | |
| self.norm_attnctx = nn.LayerNorm(context_dim) | |
| self.cosine = cosine | |
| self.out = nn.Linear(dim, dim) | |
| self.ls1 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity() | |
| self.ls2 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity() | |
| def attn( | |
| self, | |
| x: torch.Tensor, | |
| attn_bias: torch.Tensor | None = None, | |
| context: torch.Tensor | None = None, | |
| pos_embed: torch.Tensor | None = None, | |
| pos_embed_context: torch.Tensor | None = None, | |
| rope: nn.Module | None = None, | |
| ) -> torch.Tensor: | |
| x = self.norm_attnx(x) | |
| context = self.norm_attnctx(context) | |
| k, v = rearrange( | |
| self.kv(context), "b n (kv h d) -> b h n d kv", h=self.num_heads, kv=2 | |
| ).unbind(dim=-1) | |
| q = rearrange(self.q(x), "b n (h d) -> b h n d", h=self.num_heads) | |
| if rope is not None: | |
| q = rope(q) | |
| k = rope(k) | |
| else: | |
| if pos_embed is not None: | |
| pos_embed = rearrange( | |
| pos_embed, "b n (h d) -> b h n d", h=self.num_heads | |
| ) | |
| q = q + pos_embed | |
| if pos_embed_context is not None: | |
| pos_embed_context = rearrange( | |
| pos_embed_context, "b n (h d) -> b h n d", h=self.num_heads | |
| ) | |
| k = k + pos_embed_context | |
| if self.cosine: | |
| q, k = map(partial(F.normalize, p=2, dim=-1), (q, k)) # cosine sim | |
| x = F.scaled_dot_product_attention( | |
| q, k, v, dropout_p=self.dropout, attn_mask=attn_bias | |
| ) | |
| x = rearrange(x, "b h n d -> b n (h d)") | |
| x = self.out(x) | |
| return x | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| attn_bias: torch.Tensor | None = None, | |
| context: torch.Tensor | None = None, | |
| pos_embed: torch.Tensor | None = None, | |
| pos_embed_context: torch.Tensor | None = None, | |
| rope: nn.Module | None = None, | |
| ) -> torch.Tensor: | |
| context = x if context is None else context | |
| x = ( | |
| self.ls1( | |
| self.attn( | |
| x, | |
| rope=rope, | |
| attn_bias=attn_bias, | |
| context=context, | |
| pos_embed=pos_embed, | |
| pos_embed_context=pos_embed_context, | |
| ) | |
| ) | |
| + x | |
| ) | |
| x = self.ls2(self.mlp(x)) + x | |
| return x | |
| class AttentionDecoderBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_heads: int = 4, | |
| expansion: int = 4, | |
| dropout: float = 0.0, | |
| cosine: bool = False, | |
| gated: bool = False, | |
| layer_scale: float = 1.0, | |
| context_dim: int | None = None, | |
| single_head_ca: bool = True, | |
| ): | |
| super().__init__() | |
| self.dropout = dropout | |
| self.num_heads = num_heads | |
| self.hidden_dim = dim | |
| self.single_head_ca = single_head_ca | |
| context_dim = context_dim or dim | |
| self.mlp = MLP(dim, expansion=expansion, dropout=dropout, gated=gated) | |
| self.kv_ca = nn.Linear(context_dim, dim * 2) | |
| self.q_ca = nn.Linear(dim, dim) | |
| self.kv_sa = nn.Linear(dim, dim * 2) | |
| self.q_sa = nn.Linear(dim, dim) | |
| self.norm_x_sa = nn.LayerNorm(dim) | |
| self.norm_x_ca = nn.LayerNorm(dim) | |
| self.norm_ctx_ca = nn.LayerNorm(context_dim) | |
| self.cosine = cosine | |
| self.out_ca = nn.Linear(dim, dim) | |
| self.out_sa = nn.Linear(dim, dim) | |
| self.ls1 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity() | |
| self.ls2 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity() | |
| self.ls3 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity() | |
| def cross_attn( | |
| self, | |
| x: torch.Tensor, | |
| attn_bias: torch.Tensor | None = None, | |
| context: torch.Tensor | None = None, | |
| pos_embed: torch.Tensor | None = None, | |
| pos_embed_context: torch.Tensor | None = None, | |
| rope: nn.Module | None = None, | |
| ) -> torch.Tensor: | |
| num_heads = 1 if self.single_head_ca else self.num_heads | |
| x = self.norm_x_ca(x) | |
| context = self.norm_ctx_ca(context) | |
| k, v = rearrange( | |
| self.kv_ca(context), "b n (kv h d) -> b h n d kv", h=num_heads, kv=2 | |
| ).unbind(dim=-1) | |
| q = rearrange(self.q_ca(x), "b n (h d) -> b h n d", h=num_heads) | |
| if rope is not None: | |
| q = rope(q) | |
| k = rope(k) | |
| else: | |
| if pos_embed is not None: | |
| pos_embed = rearrange(pos_embed, "b n (h d) -> b h n d", h=num_heads) | |
| q = q + pos_embed | |
| if pos_embed_context is not None: | |
| pos_embed_context = rearrange( | |
| pos_embed_context, "b n (h d) -> b h n d", h=num_heads | |
| ) | |
| k = k + pos_embed_context | |
| if self.cosine: | |
| q, k = map(partial(F.normalize, p=2, dim=-1), (q, k)) # cosine sim | |
| x = F.scaled_dot_product_attention( | |
| q, k, v, dropout_p=self.dropout, attn_mask=attn_bias | |
| ) | |
| x = rearrange(x, "b h n d -> b n (h d)") | |
| x = self.out_ca(x) | |
| return x | |
| def self_attn( | |
| self, | |
| x: torch.Tensor, | |
| attn_bias: torch.Tensor | None = None, | |
| pos_embed: torch.Tensor | None = None, | |
| rope: nn.Module | None = None, | |
| ) -> torch.Tensor: | |
| x = self.norm_x_sa(x) | |
| k, v = rearrange( | |
| self.kv_sa(x), "b n (kv h d) -> b h n d kv", h=self.num_heads, kv=2 | |
| ).unbind(dim=-1) | |
| q = rearrange(self.q_sa(x), "b n (h d) -> b h n d", h=self.num_heads) | |
| if rope is not None: | |
| q = rope(q) | |
| k = rope(k) | |
| elif pos_embed is not None: | |
| pos_embed = rearrange(pos_embed, "b n (h d) -> b h n d", h=self.num_heads) | |
| q = q + pos_embed | |
| if self.cosine: | |
| q, k = map(partial(F.normalize, p=2, dim=-1), (q, k)) # cosine sim | |
| x = F.scaled_dot_product_attention( | |
| q, k, v, dropout_p=self.dropout, attn_mask=attn_bias | |
| ) | |
| x = rearrange(x, "b h n d -> b n (h d)") | |
| x = self.out_sa(x) | |
| return x | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| attn_bias: torch.Tensor | None = None, | |
| context: torch.Tensor | None = None, | |
| pos_embed: torch.Tensor | None = None, | |
| pos_embed_context: torch.Tensor | None = None, | |
| rope: nn.Module | None = None, | |
| ) -> torch.Tensor: | |
| context = x if context is None else context | |
| x = ( | |
| self.ls1( | |
| self.cross_attn( | |
| x, | |
| rope=rope, | |
| attn_bias=attn_bias, | |
| context=context, | |
| pos_embed=pos_embed, | |
| pos_embed_context=pos_embed_context, | |
| ) | |
| ) | |
| + x | |
| ) | |
| x = ( | |
| self.ls2( | |
| self.self_attn(x, rope=rope, attn_bias=attn_bias, pos_embed=pos_embed) | |
| ) | |
| + x | |
| ) | |
| x = self.ls3(self.mlp(x)) + x | |
| return x | |