Spaces:
Runtime error
Runtime error
initial setup
Browse files- app.py +140 -4
- requirements.txt +8 -0
app.py
CHANGED
|
@@ -1,7 +1,143 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
def greet(name):
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 4 |
+
from qwen_vl_utils import process_vision_info
|
| 5 |
+
import torch
|
| 6 |
+
import base64
|
| 7 |
+
from PIL import Image, ImageDraw
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
import re
|
| 10 |
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
models = {
|
| 13 |
+
"OS-Copilot/OS-Atlas-Base-7B": Qwen2VLForConditionalGeneration.from_pretrained("OS-Copilot/OS-Atlas-Base-7B", torch_dtype="auto", device_map="auto"),
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
processors = {
|
| 17 |
+
"OS-Copilot/OS-Atlas-Base-7B": AutoProcessor.from_pretrained("OS-Copilot/OS-Atlas-Base-7B")
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def image_to_base64(image):
|
| 22 |
+
buffered = BytesIO()
|
| 23 |
+
image.save(buffered, format="PNG")
|
| 24 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 25 |
+
return img_str
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2):
|
| 29 |
+
draw = ImageDraw.Draw(image)
|
| 30 |
+
for box in bounding_boxes:
|
| 31 |
+
xmin, ymin, xmax, ymax = box
|
| 32 |
+
draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
|
| 33 |
+
return image
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
|
| 37 |
+
x_scale = original_width / scaled_width
|
| 38 |
+
y_scale = original_height / scaled_height
|
| 39 |
+
rescaled_boxes = []
|
| 40 |
+
for box in bounding_boxes:
|
| 41 |
+
xmin, ymin, xmax, ymax = box
|
| 42 |
+
rescaled_box = [
|
| 43 |
+
xmin * x_scale,
|
| 44 |
+
ymin * y_scale,
|
| 45 |
+
xmax * x_scale,
|
| 46 |
+
ymax * y_scale
|
| 47 |
+
]
|
| 48 |
+
rescaled_boxes.append(rescaled_box)
|
| 49 |
+
return rescaled_boxes
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
@spaces.GPU
|
| 53 |
+
def run_example(image, text_input, system_prompt, model_id="OS-Copilot/OS-Atlas-Base-7B"):
|
| 54 |
+
model = models[model_id].eval()
|
| 55 |
+
processor = processors[model_id]
|
| 56 |
+
|
| 57 |
+
messages = [
|
| 58 |
+
{
|
| 59 |
+
"role": "user",
|
| 60 |
+
"content": [
|
| 61 |
+
{"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
|
| 62 |
+
{"type": "text", "text": text_input},
|
| 63 |
+
],
|
| 64 |
+
}
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
text = processor.apply_chat_template(
|
| 68 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 69 |
+
)
|
| 70 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 71 |
+
inputs = processor(
|
| 72 |
+
text=[text],
|
| 73 |
+
images=image_inputs,
|
| 74 |
+
videos=video_inputs,
|
| 75 |
+
padding=True,
|
| 76 |
+
return_tensors="pt",
|
| 77 |
+
)
|
| 78 |
+
inputs = inputs.to("cuda")
|
| 79 |
+
|
| 80 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
| 81 |
+
generated_ids_trimmed = [
|
| 82 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 83 |
+
]
|
| 84 |
+
output_text = processor.batch_decode(
|
| 85 |
+
generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
|
| 86 |
+
)
|
| 87 |
+
print(output_text)
|
| 88 |
+
|
| 89 |
+
object_ref_pattern = r"<\|object_ref_start\|>(.*?)<\|object_ref_end\|>"
|
| 90 |
+
box_pattern = r"<\|box_start\|>(.*?)<\|box_end\|>"
|
| 91 |
+
|
| 92 |
+
object_ref = re.search(object_ref_pattern, text).group(1)
|
| 93 |
+
box_content = re.search(box_pattern, text).group(1)
|
| 94 |
+
|
| 95 |
+
boxes = [tuple(map(int, pair.strip("()").split(','))) for pair in box_content.split("),(")]
|
| 96 |
+
boxes = [boxes[0][0], boxes[0][1], boxes[1][0], boxes[1][1]]
|
| 97 |
+
|
| 98 |
+
scaled_boxes = rescale_bounding_boxes(boxes, image.width, image.height)
|
| 99 |
+
return output_text, boxes, draw_bounding_boxes(image, scaled_boxes)
|
| 100 |
+
|
| 101 |
+
css = """
|
| 102 |
+
#output {
|
| 103 |
+
height: 500px;
|
| 104 |
+
overflow: auto;
|
| 105 |
+
border: 1px solid #ccc;
|
| 106 |
+
}
|
| 107 |
+
"""
|
| 108 |
+
default_system_prompt = "You are a helpfull assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] whith the values beeing scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."
|
| 109 |
+
|
| 110 |
+
with gr.Blocks(css=css) as demo:
|
| 111 |
+
gr.Markdown(
|
| 112 |
+
"""
|
| 113 |
+
# OS-Atlas Demo
|
| 114 |
+
""")
|
| 115 |
+
with gr.Tab(label="OS-Atlas Input"):
|
| 116 |
+
with gr.Row():
|
| 117 |
+
with gr.Column():
|
| 118 |
+
input_img = gr.Image(label="Input Image", type="pil")
|
| 119 |
+
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="OS-Copilot/OS-Atlas-Base-7B")
|
| 120 |
+
system_prompt = gr.Textbox(label="System Prompt", value=default_system_prompt)
|
| 121 |
+
text_input = gr.Textbox(label="User Prompt")
|
| 122 |
+
submit_btn = gr.Button(value="Submit")
|
| 123 |
+
with gr.Column():
|
| 124 |
+
model_output_text = gr.Textbox(label="Model Output Text")
|
| 125 |
+
parsed_boxes = gr.Textbox(label="Parsed Boxes")
|
| 126 |
+
annotated_image = gr.Image(label="Annotated Image")
|
| 127 |
+
|
| 128 |
+
gr.Examples(
|
| 129 |
+
examples=[
|
| 130 |
+
["assets/image1.jpg", "detect goats", default_system_prompt],
|
| 131 |
+
["assets/image2.jpg", "detect blue button", default_system_prompt],
|
| 132 |
+
["assets/image3.jpg", "detect person on bike", default_system_prompt],
|
| 133 |
+
],
|
| 134 |
+
inputs=[input_img, text_input, system_prompt],
|
| 135 |
+
outputs=[model_output_text, parsed_boxes, annotated_image],
|
| 136 |
+
fn=run_example,
|
| 137 |
+
cache_examples=True,
|
| 138 |
+
label="Try examples"
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
submit_btn.click(run_example, [input_img, text_input, system_prompt, model_selector], [model_output_text, parsed_boxes, annotated_image])
|
| 142 |
+
|
| 143 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy==1.24.4
|
| 2 |
+
Pillow==10.3.0
|
| 3 |
+
Requests==2.31.0
|
| 4 |
+
torch
|
| 5 |
+
torchvision
|
| 6 |
+
transformers
|
| 7 |
+
accelerate==0.30.0
|
| 8 |
+
qwen-vl-utils
|