Update app.py
Browse files
app.py
CHANGED
@@ -27,40 +27,24 @@ from pyngrok import ngrok
|
|
27 |
import threading
|
28 |
import asyncio
|
29 |
import concurrent.futures
|
30 |
-
from concurrent.futures import ThreadPoolExecutor
|
31 |
|
32 |
app = Flask(__name__)
|
33 |
-
CORS(app)
|
34 |
|
35 |
# Configure logging
|
36 |
-
log_dir = '/app/logs'
|
37 |
-
os.makedirs(log_dir, exist_ok=True)
|
38 |
logging.basicConfig(
|
39 |
level=logging.INFO,
|
40 |
-
format='%(asctime)s - %(
|
41 |
handlers=[
|
42 |
-
logging.
|
43 |
-
logging.
|
44 |
]
|
45 |
)
|
46 |
-
|
47 |
logger = logging.getLogger(__name__)
|
48 |
|
49 |
-
# Set Hugging Face cache directory
|
50 |
-
os.environ['TRANSFORMERS_CACHE'] = '/app/cache'
|
51 |
-
os.environ['HF_HOME'] = '/app/cache'
|
52 |
-
os.environ['XDG_CACHE_HOME'] = '/app/cache'
|
53 |
-
|
54 |
# Initialize geocoder
|
55 |
geocoder = Nominatim(user_agent="indian_property_verifier", timeout=10)
|
56 |
|
57 |
-
# Model instances
|
58 |
-
clip_processor = None
|
59 |
-
clip_model = None
|
60 |
-
sentence_model = None
|
61 |
-
nlp = None
|
62 |
-
zero_shot_classifier = None
|
63 |
-
|
64 |
# Cache models
|
65 |
@lru_cache(maxsize=10)
|
66 |
def load_model(task, model_name):
|
@@ -71,46 +55,31 @@ def load_model(task, model_name):
|
|
71 |
logger.error(f"Error loading model {model_name}: {str(e)}")
|
72 |
raise
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
nlp = spacy.load('en_core_web_sm')
|
100 |
-
logger.info("spaCy model loaded successfully")
|
101 |
-
except Exception as e:
|
102 |
-
logger.error(f"Error loading spaCy model: {str(e)}")
|
103 |
-
return nlp
|
104 |
-
|
105 |
-
def get_zero_shot_classifier():
|
106 |
-
global zero_shot_classifier
|
107 |
-
if zero_shot_classifier is None:
|
108 |
-
try:
|
109 |
-
zero_shot_classifier = load_model("zero-shot-classification", "facebook/bart-large-mnli")
|
110 |
-
logger.info("Zero-shot classifier loaded successfully")
|
111 |
-
except Exception as e:
|
112 |
-
logger.error(f"Error loading zero-shot classifier: {str(e)}")
|
113 |
-
return zero_shot_classifier
|
114 |
|
115 |
def make_json_serializable(obj):
|
116 |
try:
|
@@ -126,8 +95,6 @@ def make_json_serializable(obj):
|
|
126 |
return obj.item() if hasattr(obj, 'item') else float(obj)
|
127 |
elif isinstance(obj, np.ndarray):
|
128 |
return obj.tolist()
|
129 |
-
elif isinstance(obj, np.bool_):
|
130 |
-
return bool(obj)
|
131 |
else:
|
132 |
return str(obj)
|
133 |
except Exception as e:
|
@@ -233,232 +200,372 @@ def get_location():
|
|
233 |
}), 500
|
234 |
|
235 |
def calculate_final_verdict(results):
|
|
|
|
|
|
|
|
|
|
|
236 |
try:
|
237 |
# Initialize verdict components
|
238 |
verdict = {
|
239 |
'status': 'unknown',
|
240 |
-
'score': 0.0,
|
241 |
'confidence': 0.0,
|
|
|
242 |
'reasons': [],
|
243 |
-
'warnings': [],
|
244 |
'critical_issues': [],
|
|
|
245 |
'recommendations': []
|
246 |
}
|
247 |
|
248 |
-
#
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
else:
|
287 |
-
verdict['
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
verdict['warnings'].append("Location details need verification")
|
294 |
-
|
295 |
-
if 'price_analysis' in results:
|
296 |
-
verdict['reasons'].append(f"Price assessment: {results['price_analysis'].get('assessment', 'unknown')}")
|
297 |
-
if results['price_analysis'].get('assessment') == 'suspiciously high price':
|
298 |
-
verdict['warnings'].append("Property price seems unusually high for the area")
|
299 |
-
|
300 |
-
if 'legal_analysis' in results:
|
301 |
-
verdict['reasons'].append(f"Legal assessment: {results['legal_analysis'].get('assessment', 'unknown')}")
|
302 |
-
if results['legal_analysis'].get('potential_issues'):
|
303 |
-
verdict['critical_issues'].append("Potential legal issues detected")
|
304 |
-
|
305 |
-
if 'specs_analysis' in results:
|
306 |
-
verdict['reasons'].append(f"Specifications verification: {'valid' if results['specs_analysis'].get('is_valid') else 'invalid'}")
|
307 |
-
if not results['specs_analysis'].get('is_valid'):
|
308 |
-
verdict['warnings'].extend(results['specs_analysis'].get('issues', []))
|
309 |
-
|
310 |
-
# Add recommendations
|
311 |
-
if verdict['status'] == 'unverified':
|
312 |
-
verdict['recommendations'].append("Additional verification required")
|
313 |
-
if verdict['warnings']:
|
314 |
-
verdict['recommendations'].append("Address the warnings before proceeding")
|
315 |
-
if verdict['critical_issues']:
|
316 |
-
verdict['recommendations'].append("Resolve critical issues before proceeding")
|
317 |
|
318 |
return verdict
|
319 |
-
|
320 |
except Exception as e:
|
321 |
logger.error(f"Error calculating final verdict: {str(e)}")
|
322 |
return {
|
323 |
'status': 'error',
|
324 |
-
'score': 0.0,
|
325 |
'confidence': 0.0,
|
|
|
326 |
'reasons': [f"Error calculating verdict: {str(e)}"],
|
327 |
-
'warnings': [],
|
328 |
'critical_issues': [],
|
|
|
329 |
'recommendations': ["Unable to determine property status due to an error"]
|
330 |
}
|
331 |
|
332 |
@app.route('/verify', methods=['POST'])
|
333 |
def verify_property():
|
334 |
try:
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
'pdf_analysis': [],
|
342 |
-
'final_verdict': {},
|
343 |
-
'suggestions': []
|
344 |
-
}
|
345 |
|
346 |
-
#
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
'age': request.form.get('age', '').strip(),
|
371 |
-
'facing': request.form.get('facing', '').strip(),
|
372 |
-
'amenities': request.form.get('amenities', '').strip()
|
373 |
-
}
|
374 |
|
375 |
# Validate required fields
|
376 |
required_fields = ['property_name', 'property_type', 'address', 'city', 'state']
|
377 |
-
missing_fields = [field for field in required_fields if not data
|
378 |
if missing_fields:
|
|
|
379 |
return jsonify({
|
380 |
-
'error':
|
381 |
-
'
|
382 |
}), 400
|
383 |
|
384 |
-
# Process images
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
|
|
395 |
try:
|
396 |
-
|
397 |
-
|
|
|
|
|
|
|
|
|
398 |
except Exception as e:
|
399 |
-
logger.error(f"Error processing image: {str(e)}")
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
|
|
|
|
|
|
411 |
try:
|
412 |
-
|
413 |
-
|
|
|
|
|
|
|
|
|
414 |
except Exception as e:
|
415 |
-
logger.error(f"Error processing PDF: {str(e)}")
|
416 |
-
|
417 |
-
|
418 |
-
#
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
|
|
|
|
433 |
|
434 |
-
#
|
435 |
-
|
436 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
|
438 |
-
|
439 |
-
serializable_results = make_json_serializable(results)
|
440 |
-
return jsonify(serializable_results)
|
441 |
|
442 |
-
|
443 |
-
|
444 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
|
446 |
-
|
447 |
-
try:
|
448 |
-
img = Image.open(img_file)
|
449 |
-
buffered = io.BytesIO()
|
450 |
-
img.save(buffered, format="JPEG")
|
451 |
-
img_str = base64.b64encode(buffered.getvalue()).decode()
|
452 |
-
return analyze_image(img)
|
453 |
-
except Exception as e:
|
454 |
-
raise Exception(f"Error processing image {img_file.filename}: {str(e)}")
|
455 |
|
456 |
-
def process_pdf(pdf_file, data):
|
457 |
-
try:
|
458 |
-
pdf_text = extract_pdf_text(pdf_file)
|
459 |
-
return analyze_pdf_content(pdf_text, data)
|
460 |
except Exception as e:
|
461 |
-
|
|
|
|
|
|
|
|
|
|
|
462 |
|
463 |
def extract_pdf_text(pdf_file):
|
464 |
try:
|
@@ -474,8 +581,7 @@ def extract_pdf_text(pdf_file):
|
|
474 |
|
475 |
def analyze_image(image):
|
476 |
try:
|
477 |
-
if
|
478 |
-
get_clip_model()
|
479 |
img_rgb = image.convert('RGB')
|
480 |
inputs = clip_processor(
|
481 |
text=[
|
@@ -511,6 +617,16 @@ def analyze_image(image):
|
|
511 |
'is_ai_generated': is_ai_generated,
|
512 |
'authenticity_score': 0.95 if not is_ai_generated else 0.60
|
513 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
514 |
except Exception as e:
|
515 |
logger.error(f"Error analyzing image: {str(e)}")
|
516 |
return {
|
@@ -542,120 +658,113 @@ def detect_ai_generated_image(image):
|
|
542 |
|
543 |
def analyze_pdf_content(document_text, property_data):
|
544 |
try:
|
545 |
-
if not document_text
|
546 |
return {
|
547 |
-
'document_type': 'unknown',
|
548 |
-
'confidence': 0.0,
|
549 |
'key_info': {},
|
550 |
-
'summary': 'No text content found in document',
|
551 |
'consistency_score': 0.0,
|
552 |
-
'
|
|
|
|
|
|
|
|
|
553 |
}
|
554 |
|
555 |
-
# Use
|
556 |
-
|
557 |
-
|
558 |
-
# Define document types
|
559 |
-
document_types = [
|
560 |
-
"sale deed",
|
561 |
-
"property tax receipt",
|
562 |
-
"encumbrance certificate",
|
563 |
-
"building approval",
|
564 |
-
"occupancy certificate",
|
565 |
-
"power of attorney",
|
566 |
-
"lease agreement",
|
567 |
-
"will",
|
568 |
-
"gift deed",
|
569 |
-
"partition deed"
|
570 |
-
]
|
571 |
|
572 |
-
#
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
doc_type = document_types[doc_type_idx]
|
580 |
-
confidence = float(similarities[doc_type_idx])
|
581 |
|
582 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
583 |
key_info = extract_document_key_info(document_text)
|
584 |
|
585 |
-
#
|
586 |
-
summary = summarize_text(document_text)
|
587 |
-
|
588 |
-
# Check consistency with property data
|
589 |
consistency_score = check_document_consistency(document_text, property_data)
|
590 |
|
591 |
-
#
|
592 |
-
|
593 |
-
|
594 |
-
risk_indicators.append("Document content inconsistent with property details")
|
595 |
-
if confidence < 0.6:
|
596 |
-
risk_indicators.append("Low confidence in document type identification")
|
597 |
-
if len(key_info) < 3:
|
598 |
-
risk_indicators.append("Limited key information extracted")
|
599 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
600 |
return {
|
601 |
-
'document_type': doc_type,
|
602 |
-
'confidence':
|
603 |
'key_info': key_info,
|
|
|
|
|
604 |
'summary': summary,
|
605 |
-
'
|
606 |
-
'
|
|
|
607 |
}
|
608 |
except Exception as e:
|
609 |
logger.error(f"Error analyzing PDF content: {str(e)}")
|
610 |
return {
|
611 |
-
'document_type': '
|
612 |
-
'confidence': 0.0,
|
613 |
'key_info': {},
|
614 |
-
'summary': f'Error analyzing document: {str(e)}',
|
615 |
'consistency_score': 0.0,
|
616 |
-
'
|
|
|
|
|
|
|
|
|
|
|
617 |
}
|
618 |
|
619 |
-
def summarize_text(text):
|
620 |
-
try:
|
621 |
-
if not text or len(text.strip()) < 10:
|
622 |
-
return "No text to summarize."
|
623 |
-
|
624 |
-
# Use sentence transformer for summarization
|
625 |
-
sentence_model = get_sentence_model()
|
626 |
-
|
627 |
-
# Split text into sentences
|
628 |
-
sentences = text.split('.')
|
629 |
-
sentences = [s.strip() for s in sentences if s.strip()]
|
630 |
-
|
631 |
-
if not sentences:
|
632 |
-
return "No valid sentences found."
|
633 |
-
|
634 |
-
# Get sentence embeddings
|
635 |
-
sentence_embeddings = sentence_model.encode(sentences)
|
636 |
-
|
637 |
-
# Calculate sentence importance (using first sentence and average similarity)
|
638 |
-
first_sentence_embedding = sentence_embeddings[0]
|
639 |
-
similarities = util.pytorch_cos_sim(first_sentence_embedding, sentence_embeddings)[0]
|
640 |
-
avg_similarity = similarities.mean().item()
|
641 |
-
|
642 |
-
# Select important sentences
|
643 |
-
important_sentences = []
|
644 |
-
for i, (sentence, similarity) in enumerate(zip(sentences, similarities)):
|
645 |
-
if similarity > avg_similarity * 0.8: # 80% of average similarity
|
646 |
-
important_sentences.append(sentence)
|
647 |
-
if len(important_sentences) >= 3: # Limit to 3 sentences
|
648 |
-
break
|
649 |
-
|
650 |
-
return '. '.join(important_sentences) + '.'
|
651 |
-
except Exception as e:
|
652 |
-
logger.error(f"Error summarizing text: {str(e)}")
|
653 |
-
return "Error generating summary."
|
654 |
-
|
655 |
def check_document_consistency(document_text, property_data):
|
656 |
try:
|
657 |
-
if sentence_model
|
658 |
-
|
|
|
659 |
property_text = ' '.join([
|
660 |
property_data.get(key, '') for key in [
|
661 |
'property_name', 'property_type', 'address', 'city',
|
@@ -708,7 +817,7 @@ def generate_property_summary(data):
|
|
708 |
"""
|
709 |
|
710 |
# Use BART for summary generation
|
711 |
-
summarizer =
|
712 |
|
713 |
# Generate initial summary
|
714 |
summary_result = summarizer(property_context, max_length=150, min_length=50, do_sample=False)
|
@@ -762,6 +871,20 @@ def generate_property_summary(data):
|
|
762 |
logger.error(f"Error generating property summary: {str(e)}")
|
763 |
return "Could not generate summary."
|
764 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
765 |
def classify_fraud(property_details, description):
|
766 |
"""
|
767 |
Classify the risk of fraud in a property listing using zero-shot classification.
|
@@ -791,7 +914,7 @@ def classify_fraud(property_details, description):
|
|
791 |
]
|
792 |
|
793 |
# Perform zero-shot classification
|
794 |
-
classifier =
|
795 |
result = classifier(text_to_analyze, risk_categories, multi_label=True)
|
796 |
|
797 |
# Process classification results
|
@@ -903,7 +1026,7 @@ def classify_fraud(property_details, description):
|
|
903 |
|
904 |
def generate_trust_score(text, image_analysis, pdf_analysis):
|
905 |
try:
|
906 |
-
classifier =
|
907 |
aspects = [
|
908 |
"complete information provided",
|
909 |
"verified location",
|
@@ -1019,14 +1142,14 @@ def generate_trust_score(text, image_analysis, pdf_analysis):
|
|
1019 |
|
1020 |
def generate_suggestions(text, data=None):
|
1021 |
try:
|
1022 |
-
classifier =
|
1023 |
|
1024 |
# Create comprehensive context for analysis
|
1025 |
suggestion_context = text
|
1026 |
if data:
|
1027 |
suggestion_context += f"""
|
1028 |
Additional Context:
|
1029 |
-
Property Type: {data.get('property_type', '')}
|
1030 |
Location: {data.get('city', '')}, {data.get('state', '')}
|
1031 |
Size: {data.get('sq_ft', '')} sq.ft.
|
1032 |
Year Built: {data.get('year_built', '')}
|
@@ -1267,7 +1390,7 @@ def assess_text_quality(text):
|
|
1267 |
'quality_metrics': {}
|
1268 |
}
|
1269 |
|
1270 |
-
classifier =
|
1271 |
|
1272 |
# Enhanced quality categories with more specific indicators
|
1273 |
quality_categories = [
|
@@ -1811,124 +1934,396 @@ def perform_cross_validation(data):
|
|
1811 |
|
1812 |
def analyze_location(data):
|
1813 |
try:
|
1814 |
-
|
1815 |
-
|
1816 |
-
|
1817 |
-
|
1818 |
-
|
1819 |
-
|
1820 |
-
|
1821 |
-
|
1822 |
-
|
1823 |
-
|
1824 |
-
|
1825 |
-
|
1826 |
-
|
1827 |
-
|
1828 |
-
|
1829 |
-
|
1830 |
-
|
1831 |
-
|
1832 |
-
'
|
1833 |
-
|
1834 |
-
|
1835 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1836 |
|
1837 |
return {
|
1838 |
-
'
|
1839 |
-
'
|
1840 |
-
'
|
1841 |
-
'
|
1842 |
-
'
|
1843 |
-
'
|
1844 |
-
'
|
1845 |
-
'
|
|
|
1846 |
}
|
1847 |
except Exception as e:
|
1848 |
logger.error(f"Error analyzing location: {str(e)}")
|
1849 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1850 |
|
1851 |
def calculate_location_completeness(data):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1852 |
try:
|
1853 |
-
|
1854 |
-
|
1855 |
-
|
1856 |
-
|
1857 |
-
|
1858 |
-
|
1859 |
-
|
1860 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1861 |
}
|
1862 |
|
1863 |
-
|
1864 |
-
score = 0
|
1865 |
-
for field, weight in weights.items():
|
1866 |
-
if data.get(field):
|
1867 |
-
score += weight
|
1868 |
|
1869 |
-
|
1870 |
-
|
1871 |
-
|
1872 |
-
|
1873 |
-
|
1874 |
-
|
1875 |
-
|
1876 |
-
# Handle empty or invalid price values
|
1877 |
-
price_str = data.get('price', '0').strip()
|
1878 |
-
market_value_str = data.get('market_value', price_str).strip()
|
1879 |
-
area_str = data.get('area', '0').strip()
|
1880 |
|
1881 |
-
#
|
1882 |
-
|
1883 |
-
|
1884 |
-
|
1885 |
|
1886 |
-
#
|
1887 |
-
|
1888 |
-
|
1889 |
-
|
1890 |
|
1891 |
-
#
|
1892 |
-
|
|
|
|
|
|
|
|
|
1893 |
|
1894 |
return {
|
|
|
|
|
1895 |
'price': price,
|
1896 |
-
'
|
1897 |
'price_per_sqft': price_per_sqft,
|
1898 |
-
'
|
1899 |
-
'
|
1900 |
-
|
1901 |
-
|
1902 |
-
|
1903 |
-
|
|
|
|
|
1904 |
}
|
1905 |
except Exception as e:
|
1906 |
logger.error(f"Error analyzing price: {str(e)}")
|
1907 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1908 |
|
1909 |
def analyze_legal_details(legal_text):
|
1910 |
try:
|
1911 |
-
|
1912 |
-
|
1913 |
-
|
1914 |
'confidence': 0.0,
|
|
|
1915 |
'completeness_score': 0,
|
1916 |
-
|
1917 |
-
|
1918 |
-
|
1919 |
-
'legal_metrics': {
|
1920 |
-
'completeness': 0.0,
|
1921 |
-
'compliance': 0.0,
|
1922 |
-
'documentation_quality': 0.0,
|
1923 |
-
'risk_level': 0.0
|
1924 |
-
},
|
1925 |
'top_classifications': []
|
1926 |
}
|
1927 |
|
1928 |
-
|
1929 |
-
return analysis
|
1930 |
-
|
1931 |
-
classifier = get_zero_shot_classifier()
|
1932 |
|
1933 |
# Enhanced legal categories with more specific indicators
|
1934 |
categories = [
|
@@ -1977,9 +2372,7 @@ def analyze_legal_details(legal_text):
|
|
1977 |
})
|
1978 |
|
1979 |
# Generate summary using BART
|
1980 |
-
|
1981 |
-
summary = summarizer(legal_text[:1000], max_length=150, min_length=50, do_sample=False)
|
1982 |
-
initial_summary = summary[0]['summary_text']
|
1983 |
|
1984 |
# Calculate legal metrics with weighted scoring
|
1985 |
legal_metrics = {
|
@@ -2048,36 +2441,26 @@ def analyze_legal_details(legal_text):
|
|
2048 |
(1 - legal_metrics['risk_level']) * 0.2
|
2049 |
))
|
2050 |
|
2051 |
-
|
2052 |
-
|
2053 |
-
|
2054 |
-
|
2055 |
-
|
2056 |
-
|
2057 |
-
|
2058 |
-
|
2059 |
-
|
2060 |
-
|
2061 |
-
if potential_issues:
|
2062 |
-
analysis['potential_issues'] = True # Changed to lowercase true
|
2063 |
-
|
2064 |
-
return analysis
|
2065 |
-
|
2066 |
except Exception as e:
|
2067 |
logger.error(f"Error analyzing legal details: {str(e)}")
|
2068 |
return {
|
2069 |
-
'assessment': '
|
2070 |
'confidence': 0.0,
|
|
|
2071 |
'completeness_score': 0,
|
2072 |
-
'potential_issues': False,
|
2073 |
-
'
|
2074 |
-
'
|
2075 |
-
'legal_metrics': {
|
2076 |
-
'completeness': 0.0,
|
2077 |
-
'compliance': 0.0,
|
2078 |
-
'documentation_quality': 0.0,
|
2079 |
-
'risk_level': 0.0
|
2080 |
-
},
|
2081 |
'top_classifications': []
|
2082 |
}
|
2083 |
|
@@ -2561,7 +2944,7 @@ def assess_image_quality(img):
|
|
2561 |
|
2562 |
def check_if_property_related(text):
|
2563 |
try:
|
2564 |
-
classifier =
|
2565 |
result = classifier(text[:1000], ["property-related", "non-property-related"])
|
2566 |
is_related = result['labels'][0] == "property-related"
|
2567 |
return {
|
@@ -2575,35 +2958,6 @@ def check_if_property_related(text):
|
|
2575 |
'confidence': 0.0
|
2576 |
}
|
2577 |
|
2578 |
-
# Optimize model loading
|
2579 |
-
def load_models_in_background():
|
2580 |
-
"""Load models in background to avoid blocking the main thread"""
|
2581 |
-
def load_models():
|
2582 |
-
try:
|
2583 |
-
# Load models in parallel
|
2584 |
-
with ThreadPoolExecutor(max_workers=4) as executor:
|
2585 |
-
futures = [
|
2586 |
-
executor.submit(get_clip_model),
|
2587 |
-
executor.submit(get_sentence_model),
|
2588 |
-
executor.submit(get_spacy_model),
|
2589 |
-
executor.submit(get_zero_shot_classifier)
|
2590 |
-
]
|
2591 |
-
|
2592 |
-
# Wait for all models to load
|
2593 |
-
for future in concurrent.futures.as_completed(futures):
|
2594 |
-
try:
|
2595 |
-
future.result()
|
2596 |
-
except Exception as e:
|
2597 |
-
logger.error(f"Error loading model: {str(e)}")
|
2598 |
-
except Exception as e:
|
2599 |
-
logger.error(f"Error in background model loading: {str(e)}")
|
2600 |
-
|
2601 |
-
# Start model loading in background
|
2602 |
-
threading.Thread(target=load_models, daemon=True).start()
|
2603 |
-
|
2604 |
-
# Start model loading when the app starts
|
2605 |
-
load_models_in_background()
|
2606 |
-
|
2607 |
if __name__ == '__main__':
|
2608 |
# Run Flask app
|
2609 |
app.run(host='0.0.0.0', port=8000, debug=True, use_reloader=False)
|
|
|
27 |
import threading
|
28 |
import asyncio
|
29 |
import concurrent.futures
|
|
|
30 |
|
31 |
app = Flask(__name__)
|
32 |
+
CORS(app) # Enable CORS for frontend
|
33 |
|
34 |
# Configure logging
|
|
|
|
|
35 |
logging.basicConfig(
|
36 |
level=logging.INFO,
|
37 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
38 |
handlers=[
|
39 |
+
logging.FileHandler('app.log'),
|
40 |
+
logging.StreamHandler()
|
41 |
]
|
42 |
)
|
|
|
43 |
logger = logging.getLogger(__name__)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
45 |
# Initialize geocoder
|
46 |
geocoder = Nominatim(user_agent="indian_property_verifier", timeout=10)
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# Cache models
|
49 |
@lru_cache(maxsize=10)
|
50 |
def load_model(task, model_name):
|
|
|
55 |
logger.error(f"Error loading model {model_name}: {str(e)}")
|
56 |
raise
|
57 |
|
58 |
+
# Initialize CLIP model
|
59 |
+
try:
|
60 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
61 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
62 |
+
has_clip_model = True
|
63 |
+
logger.info("CLIP model loaded successfully")
|
64 |
+
except Exception as e:
|
65 |
+
logger.error(f"Error loading CLIP model: {str(e)}")
|
66 |
+
has_clip_model = False
|
67 |
+
|
68 |
+
# Initialize sentence transformer
|
69 |
+
try:
|
70 |
+
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
71 |
+
logger.info("Sentence transformer loaded successfully")
|
72 |
+
except Exception as e:
|
73 |
+
logger.error(f"Error loading sentence transformer: {str(e)}")
|
74 |
+
sentence_model = None
|
75 |
+
|
76 |
+
# Initialize spaCy
|
77 |
+
try:
|
78 |
+
nlp = spacy.load('en_core_web_md')
|
79 |
+
logger.info("spaCy model loaded successfully")
|
80 |
+
except Exception as e:
|
81 |
+
logger.error(f"Error loading spaCy model: {str(e)}")
|
82 |
+
nlp = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
def make_json_serializable(obj):
|
85 |
try:
|
|
|
95 |
return obj.item() if hasattr(obj, 'item') else float(obj)
|
96 |
elif isinstance(obj, np.ndarray):
|
97 |
return obj.tolist()
|
|
|
|
|
98 |
else:
|
99 |
return str(obj)
|
100 |
except Exception as e:
|
|
|
200 |
}), 500
|
201 |
|
202 |
def calculate_final_verdict(results):
|
203 |
+
"""
|
204 |
+
Calculate a comprehensive final verdict based on all analysis results.
|
205 |
+
This function combines all verification scores, fraud indicators, and quality assessments
|
206 |
+
to determine if a property listing is legitimate, suspicious, or fraudulent.
|
207 |
+
"""
|
208 |
try:
|
209 |
# Initialize verdict components
|
210 |
verdict = {
|
211 |
'status': 'unknown',
|
|
|
212 |
'confidence': 0.0,
|
213 |
+
'score': 0.0,
|
214 |
'reasons': [],
|
|
|
215 |
'critical_issues': [],
|
216 |
+
'warnings': [],
|
217 |
'recommendations': []
|
218 |
}
|
219 |
|
220 |
+
# Extract key components from results
|
221 |
+
trust_score = results.get('trust_score', {}).get('score', 0)
|
222 |
+
fraud_classification = results.get('fraud_classification', {})
|
223 |
+
quality_assessment = results.get('quality_assessment', {})
|
224 |
+
specs_verification = results.get('specs_verification', {})
|
225 |
+
cross_validation = results.get('cross_validation', [])
|
226 |
+
location_analysis = results.get('location_analysis', {})
|
227 |
+
price_analysis = results.get('price_analysis', {})
|
228 |
+
legal_analysis = results.get('legal_analysis', {})
|
229 |
+
document_analysis = results.get('document_analysis', {})
|
230 |
+
image_analysis = results.get('image_analysis', {})
|
231 |
+
|
232 |
+
# Calculate component scores (0-100)
|
233 |
+
component_scores = {
|
234 |
+
'trust': trust_score,
|
235 |
+
'fraud': 100 - (fraud_classification.get('alert_score', 0) * 100),
|
236 |
+
'quality': quality_assessment.get('score', 0),
|
237 |
+
'specs': specs_verification.get('verification_score', 0),
|
238 |
+
'location': location_analysis.get('completeness_score', 0),
|
239 |
+
'price': price_analysis.get('confidence', 0) * 100 if price_analysis.get('has_price') else 0,
|
240 |
+
'legal': legal_analysis.get('completeness_score', 0),
|
241 |
+
'documents': min(100, (document_analysis.get('pdf_count', 0) / 3) * 100) if document_analysis.get('pdf_count') else 0,
|
242 |
+
'images': min(100, (image_analysis.get('image_count', 0) / 5) * 100) if image_analysis.get('image_count') else 0
|
243 |
+
}
|
244 |
+
|
245 |
+
# Calculate weighted final score with adjusted weights
|
246 |
+
weights = {
|
247 |
+
'trust': 0.20,
|
248 |
+
'fraud': 0.25, # Increased weight for fraud detection
|
249 |
+
'quality': 0.15,
|
250 |
+
'specs': 0.10,
|
251 |
+
'location': 0.10,
|
252 |
+
'price': 0.05,
|
253 |
+
'legal': 0.05,
|
254 |
+
'documents': 0.05,
|
255 |
+
'images': 0.05
|
256 |
+
}
|
257 |
+
|
258 |
+
final_score = sum(score * weights.get(component, 0) for component, score in component_scores.items())
|
259 |
+
verdict['score'] = final_score
|
260 |
+
|
261 |
+
# Determine verdict status based on multiple factors
|
262 |
+
fraud_level = fraud_classification.get('alert_level', 'minimal')
|
263 |
+
high_risk_indicators = len(fraud_classification.get('high_risk', []))
|
264 |
+
critical_issues = []
|
265 |
+
warnings = []
|
266 |
+
|
267 |
+
# Check for critical issues
|
268 |
+
if fraud_level in ['critical', 'high']:
|
269 |
+
critical_issues.append(f"High fraud risk detected: {fraud_level} alert level")
|
270 |
+
|
271 |
+
if trust_score < 40:
|
272 |
+
critical_issues.append(f"Very low trust score: {trust_score}%")
|
273 |
+
|
274 |
+
if quality_assessment.get('score', 0) < 30:
|
275 |
+
critical_issues.append(f"Very low content quality: {quality_assessment.get('score', 0)}%")
|
276 |
+
|
277 |
+
if specs_verification.get('verification_score', 0) < 40:
|
278 |
+
critical_issues.append(f"Property specifications verification failed: {specs_verification.get('verification_score', 0)}%")
|
279 |
+
|
280 |
+
# Check for warnings
|
281 |
+
if fraud_level == 'medium':
|
282 |
+
warnings.append(f"Medium fraud risk detected: {fraud_level} alert level")
|
283 |
+
|
284 |
+
if trust_score < 60:
|
285 |
+
warnings.append(f"Low trust score: {trust_score}%")
|
286 |
+
|
287 |
+
if quality_assessment.get('score', 0) < 60:
|
288 |
+
warnings.append(f"Low content quality: {quality_assessment.get('score', 0)}%")
|
289 |
+
|
290 |
+
if specs_verification.get('verification_score', 0) < 70:
|
291 |
+
warnings.append(f"Property specifications have issues: {specs_verification.get('verification_score', 0)}%")
|
292 |
+
|
293 |
+
# Check cross-validation results
|
294 |
+
for check in cross_validation:
|
295 |
+
if check.get('status') in ['inconsistent', 'invalid', 'suspicious', 'no_match']:
|
296 |
+
warnings.append(f"Cross-validation issue: {check.get('message', 'Unknown issue')}")
|
297 |
+
|
298 |
+
# Check for missing critical information
|
299 |
+
missing_critical = []
|
300 |
+
if not location_analysis.get('completeness_score', 0) > 70:
|
301 |
+
missing_critical.append("Location information is incomplete")
|
302 |
+
|
303 |
+
if not price_analysis.get('has_price', False):
|
304 |
+
missing_critical.append("Price information is missing")
|
305 |
+
|
306 |
+
if not legal_analysis.get('completeness_score', 0) > 70:
|
307 |
+
missing_critical.append("Legal information is incomplete")
|
308 |
+
|
309 |
+
if document_analysis.get('pdf_count', 0) == 0:
|
310 |
+
missing_critical.append("No supporting documents provided")
|
311 |
+
|
312 |
+
if image_analysis.get('image_count', 0) == 0:
|
313 |
+
missing_critical.append("No property images provided")
|
314 |
+
|
315 |
+
if missing_critical:
|
316 |
+
warnings.append(f"Missing critical information: {', '.join(missing_critical)}")
|
317 |
+
|
318 |
+
# Enhanced verdict determination with more strict criteria
|
319 |
+
if critical_issues or (fraud_level in ['critical', 'high'] and trust_score < 50) or high_risk_indicators > 0:
|
320 |
+
verdict['status'] = 'fraudulent'
|
321 |
+
verdict['confidence'] = min(100, max(70, 100 - (trust_score * 0.5)))
|
322 |
+
elif warnings or (fraud_level == 'medium' and trust_score < 70) or specs_verification.get('verification_score', 0) < 60:
|
323 |
+
verdict['status'] = 'suspicious'
|
324 |
+
verdict['confidence'] = min(100, max(50, trust_score * 0.8))
|
325 |
+
else:
|
326 |
+
verdict['status'] = 'legitimate'
|
327 |
+
verdict['confidence'] = min(100, max(70, trust_score * 0.9))
|
328 |
+
|
329 |
+
# Add reasons to verdict
|
330 |
+
verdict['critical_issues'] = critical_issues
|
331 |
+
verdict['warnings'] = warnings
|
332 |
+
|
333 |
+
# Add recommendations based on issues
|
334 |
+
if critical_issues:
|
335 |
+
verdict['recommendations'].append("Do not proceed with this property listing")
|
336 |
+
verdict['recommendations'].append("Report this listing to the platform")
|
337 |
+
elif warnings:
|
338 |
+
verdict['recommendations'].append("Proceed with extreme caution")
|
339 |
+
verdict['recommendations'].append("Request additional verification documents")
|
340 |
+
verdict['recommendations'].append("Verify all information with independent sources")
|
341 |
else:
|
342 |
+
verdict['recommendations'].append("Proceed with standard due diligence")
|
343 |
+
verdict['recommendations'].append("Verify final details before transaction")
|
344 |
+
|
345 |
+
# Add specific recommendations based on missing information
|
346 |
+
for missing in missing_critical:
|
347 |
+
verdict['recommendations'].append(f"Request {missing.lower()}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
|
349 |
return verdict
|
|
|
350 |
except Exception as e:
|
351 |
logger.error(f"Error calculating final verdict: {str(e)}")
|
352 |
return {
|
353 |
'status': 'error',
|
|
|
354 |
'confidence': 0.0,
|
355 |
+
'score': 0.0,
|
356 |
'reasons': [f"Error calculating verdict: {str(e)}"],
|
|
|
357 |
'critical_issues': [],
|
358 |
+
'warnings': [],
|
359 |
'recommendations': ["Unable to determine property status due to an error"]
|
360 |
}
|
361 |
|
362 |
@app.route('/verify', methods=['POST'])
|
363 |
def verify_property():
|
364 |
try:
|
365 |
+
if not request.form and not request.files:
|
366 |
+
logger.warning("No form data or files provided")
|
367 |
+
return jsonify({
|
368 |
+
'error': 'No data provided',
|
369 |
+
'status': 'error'
|
370 |
+
}), 400
|
|
|
|
|
|
|
|
|
371 |
|
372 |
+
# Extract form data
|
373 |
+
data = {
|
374 |
+
'property_name': request.form.get('property_name', '').strip(),
|
375 |
+
'property_type': request.form.get('property_type', '').strip(),
|
376 |
+
'status': request.form.get('status', '').strip(),
|
377 |
+
'description': request.form.get('description', '').strip(),
|
378 |
+
'address': request.form.get('address', '').strip(),
|
379 |
+
'city': request.form.get('city', '').strip(),
|
380 |
+
'state': request.form.get('state', '').strip(),
|
381 |
+
'country': request.form.get('country', 'India').strip(),
|
382 |
+
'zip': request.form.get('zip', '').strip(),
|
383 |
+
'latitude': request.form.get('latitude', '').strip(),
|
384 |
+
'longitude': request.form.get('longitude', '').strip(),
|
385 |
+
'bedrooms': request.form.get('bedrooms', '').strip(),
|
386 |
+
'bathrooms': request.form.get('bathrooms', '').strip(),
|
387 |
+
'total_rooms': request.form.get('total_rooms', '').strip(),
|
388 |
+
'year_built': request.form.get('year_built', '').strip(),
|
389 |
+
'parking': request.form.get('parking', '').strip(),
|
390 |
+
'sq_ft': request.form.get('sq_ft', '').strip(),
|
391 |
+
'market_value': request.form.get('market_value', '').strip(),
|
392 |
+
'amenities': request.form.get('amenities', '').strip(),
|
393 |
+
'nearby_landmarks': request.form.get('nearby_landmarks', '').strip(),
|
394 |
+
'legal_details': request.form.get('legal_details', '').strip()
|
395 |
+
}
|
|
|
|
|
|
|
|
|
396 |
|
397 |
# Validate required fields
|
398 |
required_fields = ['property_name', 'property_type', 'address', 'city', 'state']
|
399 |
+
missing_fields = [field for field in required_fields if not data[field]]
|
400 |
if missing_fields:
|
401 |
+
logger.warning(f"Missing required fields: {', '.join(missing_fields)}")
|
402 |
return jsonify({
|
403 |
+
'error': f"Missing required fields: {', '.join(missing_fields)}",
|
404 |
+
'status': 'error'
|
405 |
}), 400
|
406 |
|
407 |
+
# Process images
|
408 |
+
images = []
|
409 |
+
image_analysis = []
|
410 |
+
if 'images' in request.files:
|
411 |
+
# Get unique image files by filename to prevent duplicates
|
412 |
+
image_files = {}
|
413 |
+
for img_file in request.files.getlist('images'):
|
414 |
+
if img_file.filename and img_file.filename.lower().endswith(('.jpg', '.jpeg', '.png')):
|
415 |
+
image_files[img_file.filename] = img_file
|
416 |
+
|
417 |
+
# Process unique images
|
418 |
+
for img_file in image_files.values():
|
419 |
try:
|
420 |
+
img = Image.open(img_file)
|
421 |
+
buffered = io.BytesIO()
|
422 |
+
img.save(buffered, format="JPEG")
|
423 |
+
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
424 |
+
images.append(img_str)
|
425 |
+
image_analysis.append(analyze_image(img))
|
426 |
except Exception as e:
|
427 |
+
logger.error(f"Error processing image {img_file.filename}: {str(e)}")
|
428 |
+
image_analysis.append({'error': str(e), 'is_property_related': False})
|
429 |
+
|
430 |
+
# Process PDFs
|
431 |
+
pdf_texts = []
|
432 |
+
pdf_analysis = []
|
433 |
+
if 'documents' in request.files:
|
434 |
+
# Get unique PDF files by filename to prevent duplicates
|
435 |
+
pdf_files = {}
|
436 |
+
for pdf_file in request.files.getlist('documents'):
|
437 |
+
if pdf_file.filename and pdf_file.filename.lower().endswith('.pdf'):
|
438 |
+
pdf_files[pdf_file.filename] = pdf_file
|
439 |
+
|
440 |
+
# Process unique PDFs
|
441 |
+
for pdf_file in pdf_files.values():
|
442 |
try:
|
443 |
+
pdf_text = extract_pdf_text(pdf_file)
|
444 |
+
pdf_texts.append({
|
445 |
+
'filename': pdf_file.filename,
|
446 |
+
'text': pdf_text
|
447 |
+
})
|
448 |
+
pdf_analysis.append(analyze_pdf_content(pdf_text, data))
|
449 |
except Exception as e:
|
450 |
+
logger.error(f"Error processing PDF {pdf_file.filename}: {str(e)}")
|
451 |
+
pdf_analysis.append({'error': str(e)})
|
452 |
+
|
453 |
+
# Create consolidated text for analysis
|
454 |
+
consolidated_text = f"""
|
455 |
+
Property Name: {data['property_name']}
|
456 |
+
Property Type: {data['property_type']}
|
457 |
+
Status: {data['status']}
|
458 |
+
Description: {data['description']}
|
459 |
+
Location: {data['address']}, {data['city']}, {data['state']}, {data['country']}, {data['zip']}
|
460 |
+
Coordinates: Lat {data['latitude']}, Long {data['longitude']}
|
461 |
+
Specifications: {data['bedrooms']} bedrooms, {data['bathrooms']} bathrooms, {data['total_rooms']} total rooms
|
462 |
+
Year Built: {data['year_built']}
|
463 |
+
Parking: {data['parking']}
|
464 |
+
Size: {data['sq_ft']} sq. ft.
|
465 |
+
Market Value: ₹{data['market_value']}
|
466 |
+
Amenities: {data['amenities']}
|
467 |
+
Nearby Landmarks: {data['nearby_landmarks']}
|
468 |
+
Legal Details: {data['legal_details']}
|
469 |
+
"""
|
470 |
|
471 |
+
# Process description translation if needed
|
472 |
+
try:
|
473 |
+
description = data['description']
|
474 |
+
if description and len(description) > 10:
|
475 |
+
text_language = detect(description)
|
476 |
+
if text_language != 'en':
|
477 |
+
translated_description = GoogleTranslator(source=text_language, target='en').translate(description)
|
478 |
+
data['description_translated'] = translated_description
|
479 |
+
else:
|
480 |
+
data['description_translated'] = description
|
481 |
+
else:
|
482 |
+
data['description_translated'] = description
|
483 |
+
except Exception as e:
|
484 |
+
logger.error(f"Error in language detection/translation: {str(e)}")
|
485 |
+
data['description_translated'] = data['description']
|
486 |
+
|
487 |
+
# Run all analyses in parallel using asyncio
|
488 |
+
async def run_analyses():
|
489 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
490 |
+
loop = asyncio.get_event_loop()
|
491 |
+
tasks = [
|
492 |
+
loop.run_in_executor(executor, generate_property_summary, data),
|
493 |
+
loop.run_in_executor(executor, classify_fraud, consolidated_text, data),
|
494 |
+
loop.run_in_executor(executor, generate_trust_score, consolidated_text, image_analysis, pdf_analysis),
|
495 |
+
loop.run_in_executor(executor, generate_suggestions, consolidated_text, data),
|
496 |
+
loop.run_in_executor(executor, assess_text_quality, data['description_translated']),
|
497 |
+
loop.run_in_executor(executor, verify_address, data),
|
498 |
+
loop.run_in_executor(executor, perform_cross_validation, data),
|
499 |
+
loop.run_in_executor(executor, analyze_location, data),
|
500 |
+
loop.run_in_executor(executor, analyze_price, data),
|
501 |
+
loop.run_in_executor(executor, analyze_legal_details, data['legal_details']),
|
502 |
+
loop.run_in_executor(executor, verify_property_specs, data),
|
503 |
+
loop.run_in_executor(executor, analyze_market_value, data)
|
504 |
+
]
|
505 |
+
results = await asyncio.gather(*tasks)
|
506 |
+
return results
|
507 |
+
|
508 |
+
# Run analyses and get results
|
509 |
+
loop = asyncio.new_event_loop()
|
510 |
+
asyncio.set_event_loop(loop)
|
511 |
+
analysis_results = loop.run_until_complete(run_analyses())
|
512 |
+
loop.close()
|
513 |
+
|
514 |
+
# Unpack results
|
515 |
+
summary, fraud_classification, (trust_score, trust_reasoning), suggestions, quality_assessment, \
|
516 |
+
address_verification, cross_validation, location_analysis, price_analysis, legal_analysis, \
|
517 |
+
specs_verification, market_analysis = analysis_results
|
518 |
+
|
519 |
+
# Prepare response
|
520 |
+
document_analysis = {
|
521 |
+
'pdf_count': len(pdf_texts),
|
522 |
+
'pdf_texts': pdf_texts,
|
523 |
+
'pdf_analysis': pdf_analysis
|
524 |
+
}
|
525 |
+
image_results = {
|
526 |
+
'image_count': len(images),
|
527 |
+
'image_analysis': image_analysis
|
528 |
+
}
|
529 |
|
530 |
+
report_id = str(uuid.uuid4())
|
|
|
|
|
531 |
|
532 |
+
# Create results dictionary
|
533 |
+
results = {
|
534 |
+
'report_id': report_id,
|
535 |
+
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
|
536 |
+
'summary': summary,
|
537 |
+
'fraud_classification': fraud_classification,
|
538 |
+
'trust_score': {
|
539 |
+
'score': trust_score,
|
540 |
+
'reasoning': trust_reasoning
|
541 |
+
},
|
542 |
+
'suggestions': suggestions,
|
543 |
+
'quality_assessment': quality_assessment,
|
544 |
+
'address_verification': address_verification,
|
545 |
+
'cross_validation': cross_validation,
|
546 |
+
'location_analysis': location_analysis,
|
547 |
+
'price_analysis': price_analysis,
|
548 |
+
'legal_analysis': legal_analysis,
|
549 |
+
'document_analysis': document_analysis,
|
550 |
+
'image_analysis': image_results,
|
551 |
+
'specs_verification': specs_verification,
|
552 |
+
'market_analysis': market_analysis,
|
553 |
+
'images': images
|
554 |
+
}
|
555 |
+
|
556 |
+
# Calculate final verdict
|
557 |
+
final_verdict = calculate_final_verdict(results)
|
558 |
+
results['final_verdict'] = final_verdict
|
559 |
|
560 |
+
return jsonify(make_json_serializable(results))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
561 |
|
|
|
|
|
|
|
|
|
562 |
except Exception as e:
|
563 |
+
logger.error(f"Error in verify_property: {str(e)}")
|
564 |
+
return jsonify({
|
565 |
+
'error': 'Server error occurred. Please try again later.',
|
566 |
+
'status': 'error',
|
567 |
+
'details': str(e)
|
568 |
+
}), 500
|
569 |
|
570 |
def extract_pdf_text(pdf_file):
|
571 |
try:
|
|
|
581 |
|
582 |
def analyze_image(image):
|
583 |
try:
|
584 |
+
if has_clip_model:
|
|
|
585 |
img_rgb = image.convert('RGB')
|
586 |
inputs = clip_processor(
|
587 |
text=[
|
|
|
617 |
'is_ai_generated': is_ai_generated,
|
618 |
'authenticity_score': 0.95 if not is_ai_generated else 0.60
|
619 |
}
|
620 |
+
else:
|
621 |
+
logger.warning("CLIP model unavailable")
|
622 |
+
return {
|
623 |
+
'is_property_related': False,
|
624 |
+
'property_confidence': 0.0,
|
625 |
+
'top_predictions': [],
|
626 |
+
'image_quality': assess_image_quality(image),
|
627 |
+
'is_ai_generated': False,
|
628 |
+
'authenticity_score': 0.5
|
629 |
+
}
|
630 |
except Exception as e:
|
631 |
logger.error(f"Error analyzing image: {str(e)}")
|
632 |
return {
|
|
|
658 |
|
659 |
def analyze_pdf_content(document_text, property_data):
|
660 |
try:
|
661 |
+
if not document_text:
|
662 |
return {
|
663 |
+
'document_type': {'classification': 'unknown', 'confidence': 0.0},
|
664 |
+
'authenticity': {'assessment': 'could not verify', 'confidence': 0.0},
|
665 |
'key_info': {},
|
|
|
666 |
'consistency_score': 0.0,
|
667 |
+
'is_property_related': False,
|
668 |
+
'summary': 'Empty document',
|
669 |
+
'has_signatures': False,
|
670 |
+
'has_dates': False,
|
671 |
+
'verification_score': 0.0
|
672 |
}
|
673 |
|
674 |
+
# Use a more sophisticated model for document classification
|
675 |
+
classifier = load_model("zero-shot-classification", "facebook/bart-large-mnli")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
676 |
|
677 |
+
# Enhanced document types with more specific categories
|
678 |
+
doc_types = [
|
679 |
+
"property deed", "sales agreement", "mortgage document",
|
680 |
+
"property tax record", "title document", "khata certificate",
|
681 |
+
"encumbrance certificate", "lease agreement", "rental agreement",
|
682 |
+
"property registration document", "building permit", "other document"
|
683 |
+
]
|
|
|
|
|
684 |
|
685 |
+
# Analyze document type with context
|
686 |
+
doc_context = f"{document_text[:1000]} property_type:{property_data.get('property_type', '')} location:{property_data.get('city', '')}"
|
687 |
+
doc_result = classifier(doc_context, doc_types)
|
688 |
+
doc_type = doc_result['labels'][0]
|
689 |
+
doc_confidence = doc_result['scores'][0]
|
690 |
+
|
691 |
+
# Enhanced authenticity check with multiple aspects
|
692 |
+
authenticity_aspects = [
|
693 |
+
"authentic legal document",
|
694 |
+
"questionable document",
|
695 |
+
"forged document",
|
696 |
+
"template document",
|
697 |
+
"official document"
|
698 |
+
]
|
699 |
+
authenticity_result = classifier(document_text[:1000], authenticity_aspects)
|
700 |
+
authenticity = "likely authentic" if authenticity_result['labels'][0] == "authentic legal document" else "questionable"
|
701 |
+
authenticity_confidence = authenticity_result['scores'][0]
|
702 |
+
|
703 |
+
# Extract key information using NLP
|
704 |
key_info = extract_document_key_info(document_text)
|
705 |
|
706 |
+
# Enhanced consistency check
|
|
|
|
|
|
|
707 |
consistency_score = check_document_consistency(document_text, property_data)
|
708 |
|
709 |
+
# Property relation check with context
|
710 |
+
property_context = f"{document_text[:1000]} property:{property_data.get('property_name', '')} type:{property_data.get('property_type', '')}"
|
711 |
+
is_property_related = check_if_property_related(property_context)['is_related']
|
|
|
|
|
|
|
|
|
|
|
712 |
|
713 |
+
# Generate summary using BART
|
714 |
+
summary = summarize_text(document_text[:2000])
|
715 |
+
|
716 |
+
# Enhanced signature and date detection
|
717 |
+
has_signatures = bool(re.search(r'(?:sign|signature|signed|witness|notary|authorized).{0,50}(?:by|of|for)', document_text.lower()))
|
718 |
+
has_dates = bool(re.search(r'\d{1,2}[/-]\d{1,2}[/-]\d{2,4}|\d{4}[/-]\d{1,2}[/-]\d{1,2}', document_text))
|
719 |
+
|
720 |
+
# Calculate verification score with weighted components
|
721 |
+
verification_weights = {
|
722 |
+
'doc_type': 0.3,
|
723 |
+
'authenticity': 0.3,
|
724 |
+
'consistency': 0.2,
|
725 |
+
'property_relation': 0.1,
|
726 |
+
'signatures_dates': 0.1
|
727 |
+
}
|
728 |
+
|
729 |
+
verification_score = (
|
730 |
+
doc_confidence * verification_weights['doc_type'] +
|
731 |
+
authenticity_confidence * verification_weights['authenticity'] +
|
732 |
+
consistency_score * verification_weights['consistency'] +
|
733 |
+
float(is_property_related) * verification_weights['property_relation'] +
|
734 |
+
float(has_signatures and has_dates) * verification_weights['signatures_dates']
|
735 |
+
)
|
736 |
+
|
737 |
return {
|
738 |
+
'document_type': {'classification': doc_type, 'confidence': float(doc_confidence)},
|
739 |
+
'authenticity': {'assessment': authenticity, 'confidence': float(authenticity_confidence)},
|
740 |
'key_info': key_info,
|
741 |
+
'consistency_score': float(consistency_score),
|
742 |
+
'is_property_related': is_property_related,
|
743 |
'summary': summary,
|
744 |
+
'has_signatures': has_signatures,
|
745 |
+
'has_dates': has_dates,
|
746 |
+
'verification_score': float(verification_score)
|
747 |
}
|
748 |
except Exception as e:
|
749 |
logger.error(f"Error analyzing PDF content: {str(e)}")
|
750 |
return {
|
751 |
+
'document_type': {'classification': 'unknown', 'confidence': 0.0},
|
752 |
+
'authenticity': {'assessment': 'could not verify', 'confidence': 0.0},
|
753 |
'key_info': {},
|
|
|
754 |
'consistency_score': 0.0,
|
755 |
+
'is_property_related': False,
|
756 |
+
'summary': 'Could not analyze document',
|
757 |
+
'has_signatures': False,
|
758 |
+
'has_dates': False,
|
759 |
+
'verification_score': 0.0,
|
760 |
+
'error': str(e)
|
761 |
}
|
762 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
763 |
def check_document_consistency(document_text, property_data):
|
764 |
try:
|
765 |
+
if not sentence_model:
|
766 |
+
logger.warning("Sentence model unavailable")
|
767 |
+
return 0.5
|
768 |
property_text = ' '.join([
|
769 |
property_data.get(key, '') for key in [
|
770 |
'property_name', 'property_type', 'address', 'city',
|
|
|
817 |
"""
|
818 |
|
819 |
# Use BART for summary generation
|
820 |
+
summarizer = load_model("summarization", "facebook/bart-large-cnn")
|
821 |
|
822 |
# Generate initial summary
|
823 |
summary_result = summarizer(property_context, max_length=150, min_length=50, do_sample=False)
|
|
|
871 |
logger.error(f"Error generating property summary: {str(e)}")
|
872 |
return "Could not generate summary."
|
873 |
|
874 |
+
def summarize_text(text):
|
875 |
+
try:
|
876 |
+
if not text or len(text.strip()) < 10:
|
877 |
+
return "No text to summarize."
|
878 |
+
summarizer = load_model("summarization", "facebook/bart-large-cnn")
|
879 |
+
input_length = len(text.split())
|
880 |
+
max_length = max(50, min(150, input_length // 2))
|
881 |
+
min_length = max(20, input_length // 4)
|
882 |
+
summary = summarizer(text[:2000], max_length=max_length, min_length=min_length, do_sample=False)
|
883 |
+
return summary[0]['summary_text']
|
884 |
+
except Exception as e:
|
885 |
+
logger.error(f"Error summarizing text: {str(e)}")
|
886 |
+
return text[:200] + "..." if len(text) > 200 else text
|
887 |
+
|
888 |
def classify_fraud(property_details, description):
|
889 |
"""
|
890 |
Classify the risk of fraud in a property listing using zero-shot classification.
|
|
|
914 |
]
|
915 |
|
916 |
# Perform zero-shot classification
|
917 |
+
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
918 |
result = classifier(text_to_analyze, risk_categories, multi_label=True)
|
919 |
|
920 |
# Process classification results
|
|
|
1026 |
|
1027 |
def generate_trust_score(text, image_analysis, pdf_analysis):
|
1028 |
try:
|
1029 |
+
classifier = load_model("zero-shot-classification", "facebook/bart-large-mnli")
|
1030 |
aspects = [
|
1031 |
"complete information provided",
|
1032 |
"verified location",
|
|
|
1142 |
|
1143 |
def generate_suggestions(text, data=None):
|
1144 |
try:
|
1145 |
+
classifier = load_model("zero-shot-classification", "facebook/bart-large-mnli")
|
1146 |
|
1147 |
# Create comprehensive context for analysis
|
1148 |
suggestion_context = text
|
1149 |
if data:
|
1150 |
suggestion_context += f"""
|
1151 |
Additional Context:
|
1152 |
+
Property Type: {data.get('property_type', '')}
|
1153 |
Location: {data.get('city', '')}, {data.get('state', '')}
|
1154 |
Size: {data.get('sq_ft', '')} sq.ft.
|
1155 |
Year Built: {data.get('year_built', '')}
|
|
|
1390 |
'quality_metrics': {}
|
1391 |
}
|
1392 |
|
1393 |
+
classifier = load_model("zero-shot-classification", "facebook/bart-large-mnli")
|
1394 |
|
1395 |
# Enhanced quality categories with more specific indicators
|
1396 |
quality_categories = [
|
|
|
1934 |
|
1935 |
def analyze_location(data):
|
1936 |
try:
|
1937 |
+
classifier = load_model("zero-shot-classification", "facebook/bart-large-mnli")
|
1938 |
+
|
1939 |
+
# Create a detailed location text for analysis
|
1940 |
+
location_text = ' '.join(filter(None, [
|
1941 |
+
data['address'], data['city'], data['state'], data['country'],
|
1942 |
+
data['zip'], f"Lat: {data['latitude']}", f"Long: {data['longitude']}",
|
1943 |
+
data['nearby_landmarks']
|
1944 |
+
]))
|
1945 |
+
|
1946 |
+
# Classify location completeness
|
1947 |
+
categories = ["complete", "partial", "minimal", "missing"]
|
1948 |
+
result = classifier(location_text, categories)
|
1949 |
+
|
1950 |
+
# Verify location quality
|
1951 |
+
location_quality = "unknown"
|
1952 |
+
if data['city'] and data['state']:
|
1953 |
+
for attempt in range(3):
|
1954 |
+
try:
|
1955 |
+
location = geocoder.geocode(f"{data['city']}, {data['state']}, India")
|
1956 |
+
if location:
|
1957 |
+
location_quality = "verified"
|
1958 |
+
break
|
1959 |
+
time.sleep(1)
|
1960 |
+
except:
|
1961 |
+
time.sleep(1)
|
1962 |
+
else:
|
1963 |
+
location_quality = "unverified"
|
1964 |
+
|
1965 |
+
# Check coordinates
|
1966 |
+
coord_check = "missing"
|
1967 |
+
if data['latitude'] and data['longitude']:
|
1968 |
+
try:
|
1969 |
+
lat, lng = float(data['latitude']), float(data['longitude'])
|
1970 |
+
if 6.5 <= lat <= 37.5 and 68.0 <= lng <= 97.5:
|
1971 |
+
coord_check = "in_india"
|
1972 |
+
# Further validate coordinates against known Indian cities
|
1973 |
+
if any(city in data['city'].lower() for city in ["mumbai", "delhi", "bangalore", "hyderabad", "chennai", "kolkata", "pune"]):
|
1974 |
+
coord_check = "in_metro_city"
|
1975 |
+
else:
|
1976 |
+
coord_check = "outside_india"
|
1977 |
+
except:
|
1978 |
+
coord_check = "invalid"
|
1979 |
+
|
1980 |
+
# Calculate location completeness with weighted scoring
|
1981 |
+
completeness = calculate_location_completeness(data)
|
1982 |
+
|
1983 |
+
# Analyze landmarks
|
1984 |
+
landmarks_analysis = {
|
1985 |
+
'provided': bool(data['nearby_landmarks']),
|
1986 |
+
'count': len(data['nearby_landmarks'].split(',')) if data['nearby_landmarks'] else 0,
|
1987 |
+
'types': []
|
1988 |
+
}
|
1989 |
+
|
1990 |
+
if data['nearby_landmarks']:
|
1991 |
+
landmark_types = {
|
1992 |
+
'transport': ['station', 'metro', 'bus', 'railway', 'airport'],
|
1993 |
+
'education': ['school', 'college', 'university', 'institute'],
|
1994 |
+
'healthcare': ['hospital', 'clinic', 'medical'],
|
1995 |
+
'shopping': ['mall', 'market', 'shop', 'store'],
|
1996 |
+
'entertainment': ['park', 'garden', 'theater', 'cinema'],
|
1997 |
+
'business': ['office', 'business', 'corporate']
|
1998 |
+
}
|
1999 |
+
|
2000 |
+
landmarks = data['nearby_landmarks'].lower().split(',')
|
2001 |
+
for landmark in landmarks:
|
2002 |
+
for type_name, keywords in landmark_types.items():
|
2003 |
+
if any(keyword in landmark for keyword in keywords):
|
2004 |
+
if type_name not in landmarks_analysis['types']:
|
2005 |
+
landmarks_analysis['types'].append(type_name)
|
2006 |
+
|
2007 |
+
# Determine location assessment
|
2008 |
+
assessment = "complete" if completeness >= 80 else "partial" if completeness >= 50 else "minimal"
|
2009 |
+
|
2010 |
+
# Add city tier information
|
2011 |
+
city_tier = "unknown"
|
2012 |
+
if data['city']:
|
2013 |
+
city_lower = data['city'].lower()
|
2014 |
+
if any(city in city_lower for city in ["mumbai", "delhi", "bangalore", "hyderabad", "chennai", "kolkata", "pune"]):
|
2015 |
+
city_tier = "metro"
|
2016 |
+
elif any(city in city_lower for city in ["ahmedabad", "jaipur", "surat", "lucknow", "kanpur", "nagpur", "indore", "thane", "bhopal", "visakhapatnam"]):
|
2017 |
+
city_tier = "tier2"
|
2018 |
+
else:
|
2019 |
+
city_tier = "tier3"
|
2020 |
|
2021 |
return {
|
2022 |
+
'assessment': assessment,
|
2023 |
+
'confidence': float(result['scores'][0]),
|
2024 |
+
'coordinates_check': coord_check,
|
2025 |
+
'landmarks_analysis': landmarks_analysis,
|
2026 |
+
'completeness_score': completeness,
|
2027 |
+
'location_quality': location_quality,
|
2028 |
+
'city_tier': city_tier,
|
2029 |
+
'formatted_address': f"{data['address']}, {data['city']}, {data['state']}, India - {data['zip']}",
|
2030 |
+
'verification_status': "verified" if location_quality == "verified" and coord_check in ["in_india", "in_metro_city"] else "unverified"
|
2031 |
}
|
2032 |
except Exception as e:
|
2033 |
logger.error(f"Error analyzing location: {str(e)}")
|
2034 |
+
return {
|
2035 |
+
'assessment': 'error',
|
2036 |
+
'confidence': 0.0,
|
2037 |
+
'coordinates_check': 'error',
|
2038 |
+
'landmarks_analysis': {'provided': False, 'count': 0, 'types': []},
|
2039 |
+
'completeness_score': 0,
|
2040 |
+
'location_quality': 'error',
|
2041 |
+
'city_tier': 'unknown',
|
2042 |
+
'formatted_address': '',
|
2043 |
+
'verification_status': 'error'
|
2044 |
+
}
|
2045 |
|
2046 |
def calculate_location_completeness(data):
|
2047 |
+
# Define weights for different fields
|
2048 |
+
weights = {
|
2049 |
+
'address': 0.25,
|
2050 |
+
'city': 0.20,
|
2051 |
+
'state': 0.15,
|
2052 |
+
'country': 0.05,
|
2053 |
+
'zip': 0.10,
|
2054 |
+
'latitude': 0.10,
|
2055 |
+
'longitude': 0.10,
|
2056 |
+
'nearby_landmarks': 0.05
|
2057 |
+
}
|
2058 |
+
|
2059 |
+
# Calculate weighted score
|
2060 |
+
score = 0
|
2061 |
+
for field, weight in weights.items():
|
2062 |
+
if data[field]:
|
2063 |
+
score += weight
|
2064 |
+
|
2065 |
+
return int(score * 100)
|
2066 |
+
|
2067 |
+
def analyze_price(data):
|
2068 |
try:
|
2069 |
+
price_str = data['market_value'].replace('$', '').replace(',', '').strip()
|
2070 |
+
price = float(price_str) if price_str else 0
|
2071 |
+
sq_ft = float(re.sub(r'[^\d.]', '', data['sq_ft'])) if data['sq_ft'] else 0
|
2072 |
+
price_per_sqft = price / sq_ft if sq_ft else 0
|
2073 |
+
|
2074 |
+
if not price:
|
2075 |
+
return {
|
2076 |
+
'assessment': 'no price',
|
2077 |
+
'confidence': 0.0,
|
2078 |
+
'price': 0,
|
2079 |
+
'formatted_price': '₹0',
|
2080 |
+
'price_per_sqft': 0,
|
2081 |
+
'formatted_price_per_sqft': '₹0',
|
2082 |
+
'price_range': 'unknown',
|
2083 |
+
'location_price_assessment': 'cannot assess',
|
2084 |
+
'has_price': False,
|
2085 |
+
'market_trends': {},
|
2086 |
+
'price_factors': {},
|
2087 |
+
'risk_indicators': []
|
2088 |
+
}
|
2089 |
+
|
2090 |
+
# Use a more sophisticated model for price analysis
|
2091 |
+
classifier = load_model("zero-shot-classification", "facebook/bart-large-mnli")
|
2092 |
+
|
2093 |
+
# Create a detailed context for price analysis
|
2094 |
+
price_context = f"""
|
2095 |
+
Property Type: {data.get('property_type', '')}
|
2096 |
+
Location: {data.get('city', '')}, {data.get('state', '')}
|
2097 |
+
Size: {sq_ft} sq.ft.
|
2098 |
+
Price: ₹{price:,.2f}
|
2099 |
+
Price per sq.ft.: ₹{price_per_sqft:,.2f}
|
2100 |
+
Property Status: {data.get('status', '')}
|
2101 |
+
Year Built: {data.get('year_built', '')}
|
2102 |
+
Bedrooms: {data.get('bedrooms', '')}
|
2103 |
+
Bathrooms: {data.get('bathrooms', '')}
|
2104 |
+
Amenities: {data.get('amenities', '')}
|
2105 |
+
"""
|
2106 |
+
|
2107 |
+
# Enhanced price categories with more specific indicators
|
2108 |
+
price_categories = [
|
2109 |
+
"reasonable market price",
|
2110 |
+
"suspiciously low price",
|
2111 |
+
"suspiciously high price",
|
2112 |
+
"average market price",
|
2113 |
+
"luxury property price",
|
2114 |
+
"budget property price",
|
2115 |
+
"premium property price",
|
2116 |
+
"mid-range property price",
|
2117 |
+
"overpriced for location",
|
2118 |
+
"underpriced for location",
|
2119 |
+
"price matches amenities",
|
2120 |
+
"price matches property age",
|
2121 |
+
"price matches location value",
|
2122 |
+
"price matches property condition",
|
2123 |
+
"price matches market trends"
|
2124 |
+
]
|
2125 |
+
|
2126 |
+
# Analyze price with multiple aspects
|
2127 |
+
price_result = classifier(price_context, price_categories, multi_label=True)
|
2128 |
+
|
2129 |
+
# Get top classifications with enhanced confidence calculation
|
2130 |
+
top_classifications = []
|
2131 |
+
for label, score in zip(price_result['labels'][:5], price_result['scores'][:5]):
|
2132 |
+
if score > 0.25: # Lower threshold for better sensitivity
|
2133 |
+
top_classifications.append({
|
2134 |
+
'classification': label,
|
2135 |
+
'confidence': float(score)
|
2136 |
+
})
|
2137 |
+
|
2138 |
+
# Determine price range based on AI classification and market data
|
2139 |
+
price_range = 'unknown'
|
2140 |
+
if top_classifications:
|
2141 |
+
primary_class = top_classifications[0]['classification']
|
2142 |
+
if 'luxury' in primary_class:
|
2143 |
+
price_range = 'luxury'
|
2144 |
+
elif 'premium' in primary_class:
|
2145 |
+
price_range = 'premium'
|
2146 |
+
elif 'mid-range' in primary_class:
|
2147 |
+
price_range = 'mid_range'
|
2148 |
+
elif 'budget' in primary_class:
|
2149 |
+
price_range = 'budget'
|
2150 |
+
|
2151 |
+
# Enhanced location-specific price assessment
|
2152 |
+
location_assessment = "unknown"
|
2153 |
+
market_trends = {}
|
2154 |
+
if data.get('city') and price_per_sqft:
|
2155 |
+
city_lower = data['city'].lower()
|
2156 |
+
metro_cities = ["mumbai", "delhi", "bangalore", "hyderabad", "chennai", "kolkata", "pune"]
|
2157 |
+
|
2158 |
+
# Define price ranges for different city tiers
|
2159 |
+
if any(city in city_lower for city in metro_cities):
|
2160 |
+
market_trends = {
|
2161 |
+
'city_tier': 'metro',
|
2162 |
+
'avg_price_range': {
|
2163 |
+
'min': 5000,
|
2164 |
+
'max': 30000,
|
2165 |
+
'trend': 'stable'
|
2166 |
+
},
|
2167 |
+
'price_per_sqft': {
|
2168 |
+
'current': price_per_sqft,
|
2169 |
+
'market_avg': 15000,
|
2170 |
+
'deviation': abs(price_per_sqft - 15000) / 15000 * 100
|
2171 |
+
}
|
2172 |
+
}
|
2173 |
+
location_assessment = (
|
2174 |
+
"reasonable" if 5000 <= price_per_sqft <= 30000 else
|
2175 |
+
"suspiciously low" if price_per_sqft < 5000 else
|
2176 |
+
"suspiciously high"
|
2177 |
+
)
|
2178 |
+
else:
|
2179 |
+
market_trends = {
|
2180 |
+
'city_tier': 'non-metro',
|
2181 |
+
'avg_price_range': {
|
2182 |
+
'min': 1500,
|
2183 |
+
'max': 15000,
|
2184 |
+
'trend': 'stable'
|
2185 |
+
},
|
2186 |
+
'price_per_sqft': {
|
2187 |
+
'current': price_per_sqft,
|
2188 |
+
'market_avg': 7500,
|
2189 |
+
'deviation': abs(price_per_sqft - 7500) / 7500 * 100
|
2190 |
+
}
|
2191 |
+
}
|
2192 |
+
location_assessment = (
|
2193 |
+
"reasonable" if 1500 <= price_per_sqft <= 15000 else
|
2194 |
+
"suspiciously low" if price_per_sqft < 1500 else
|
2195 |
+
"suspiciously high"
|
2196 |
+
)
|
2197 |
+
|
2198 |
+
# Enhanced price analysis factors
|
2199 |
+
price_factors = {}
|
2200 |
+
risk_indicators = []
|
2201 |
+
|
2202 |
+
# Property age factor
|
2203 |
+
try:
|
2204 |
+
year_built = int(data.get('year_built', 0))
|
2205 |
+
current_year = datetime.now().year
|
2206 |
+
property_age = current_year - year_built
|
2207 |
+
|
2208 |
+
if property_age > 0:
|
2209 |
+
depreciation_factor = max(0.5, 1 - (property_age * 0.01)) # 1% depreciation per year, min 50%
|
2210 |
+
price_factors['age_factor'] = {
|
2211 |
+
'property_age': property_age,
|
2212 |
+
'depreciation_factor': depreciation_factor,
|
2213 |
+
'impact': 'high' if property_age > 30 else 'medium' if property_age > 15 else 'low'
|
2214 |
+
}
|
2215 |
+
except:
|
2216 |
+
price_factors['age_factor'] = {'error': 'Invalid year built'}
|
2217 |
+
|
2218 |
+
# Size factor
|
2219 |
+
if sq_ft > 0:
|
2220 |
+
size_factor = {
|
2221 |
+
'size': sq_ft,
|
2222 |
+
'price_per_sqft': price_per_sqft,
|
2223 |
+
'efficiency': 'high' if 800 <= sq_ft <= 2000 else 'medium' if 500 <= sq_ft <= 3000 else 'low'
|
2224 |
+
}
|
2225 |
+
price_factors['size_factor'] = size_factor
|
2226 |
+
|
2227 |
+
# Add risk indicators based on size
|
2228 |
+
if sq_ft < 300:
|
2229 |
+
risk_indicators.append('Unusually small property size')
|
2230 |
+
elif sq_ft > 10000:
|
2231 |
+
risk_indicators.append('Unusually large property size')
|
2232 |
+
|
2233 |
+
# Amenities factor
|
2234 |
+
if data.get('amenities'):
|
2235 |
+
amenities_list = [a.strip() for a in data['amenities'].split(',')]
|
2236 |
+
amenities_score = min(1.0, len(amenities_list) * 0.1) # 10% per amenity, max 100%
|
2237 |
+
price_factors['amenities_factor'] = {
|
2238 |
+
'count': len(amenities_list),
|
2239 |
+
'score': amenities_score,
|
2240 |
+
'impact': 'high' if amenities_score > 0.7 else 'medium' if amenities_score > 0.4 else 'low'
|
2241 |
+
}
|
2242 |
+
|
2243 |
+
# Calculate overall confidence with weighted factors
|
2244 |
+
confidence_weights = {
|
2245 |
+
'primary_classification': 0.3,
|
2246 |
+
'location_assessment': 0.25,
|
2247 |
+
'age_factor': 0.2,
|
2248 |
+
'size_factor': 0.15,
|
2249 |
+
'amenities_factor': 0.1
|
2250 |
}
|
2251 |
|
2252 |
+
confidence_scores = []
|
|
|
|
|
|
|
|
|
2253 |
|
2254 |
+
# Primary classification confidence
|
2255 |
+
if top_classifications:
|
2256 |
+
confidence_scores.append(price_result['scores'][0] * confidence_weights['primary_classification'])
|
2257 |
+
|
2258 |
+
# Location assessment confidence
|
2259 |
+
location_confidence = 0.8 if location_assessment == "reasonable" else 0.4
|
2260 |
+
confidence_scores.append(location_confidence * confidence_weights['location_assessment'])
|
|
|
|
|
|
|
|
|
2261 |
|
2262 |
+
# Age factor confidence
|
2263 |
+
if 'age_factor' in price_factors and 'depreciation_factor' in price_factors['age_factor']:
|
2264 |
+
age_confidence = price_factors['age_factor']['depreciation_factor']
|
2265 |
+
confidence_scores.append(age_confidence * confidence_weights['age_factor'])
|
2266 |
|
2267 |
+
# Size factor confidence
|
2268 |
+
if 'size_factor' in price_factors:
|
2269 |
+
size_confidence = 0.8 if price_factors['size_factor']['efficiency'] == 'high' else 0.6
|
2270 |
+
confidence_scores.append(size_confidence * confidence_weights['size_factor'])
|
2271 |
|
2272 |
+
# Amenities factor confidence
|
2273 |
+
if 'amenities_factor' in price_factors:
|
2274 |
+
amenities_confidence = price_factors['amenities_factor']['score']
|
2275 |
+
confidence_scores.append(amenities_confidence * confidence_weights['amenities_factor'])
|
2276 |
+
|
2277 |
+
overall_confidence = sum(confidence_scores) / sum(confidence_weights.values())
|
2278 |
|
2279 |
return {
|
2280 |
+
'assessment': top_classifications[0]['classification'] if top_classifications else 'could not classify',
|
2281 |
+
'confidence': float(overall_confidence),
|
2282 |
'price': price,
|
2283 |
+
'formatted_price': f"₹{price:,.0f}",
|
2284 |
'price_per_sqft': price_per_sqft,
|
2285 |
+
'formatted_price_per_sqft': f"₹{price_per_sqft:,.2f}",
|
2286 |
+
'price_range': price_range,
|
2287 |
+
'location_price_assessment': location_assessment,
|
2288 |
+
'has_price': True,
|
2289 |
+
'market_trends': market_trends,
|
2290 |
+
'price_factors': price_factors,
|
2291 |
+
'risk_indicators': risk_indicators,
|
2292 |
+
'top_classifications': top_classifications
|
2293 |
}
|
2294 |
except Exception as e:
|
2295 |
logger.error(f"Error analyzing price: {str(e)}")
|
2296 |
+
return {
|
2297 |
+
'assessment': 'error',
|
2298 |
+
'confidence': 0.0,
|
2299 |
+
'price': 0,
|
2300 |
+
'formatted_price': '₹0',
|
2301 |
+
'price_per_sqft': 0,
|
2302 |
+
'formatted_price_per_sqft': '₹0',
|
2303 |
+
'price_range': 'unknown',
|
2304 |
+
'location_price_assessment': 'error',
|
2305 |
+
'has_price': False,
|
2306 |
+
'market_trends': {},
|
2307 |
+
'price_factors': {},
|
2308 |
+
'risk_indicators': [],
|
2309 |
+
'top_classifications': []
|
2310 |
+
}
|
2311 |
|
2312 |
def analyze_legal_details(legal_text):
|
2313 |
try:
|
2314 |
+
if not legal_text or len(legal_text.strip()) < 5:
|
2315 |
+
return {
|
2316 |
+
'assessment': 'insufficient',
|
2317 |
'confidence': 0.0,
|
2318 |
+
'summary': 'No legal details provided',
|
2319 |
'completeness_score': 0,
|
2320 |
+
'potential_issues': False,
|
2321 |
+
'legal_metrics': {},
|
2322 |
+
'reasoning': 'No legal details provided for analysis',
|
|
|
|
|
|
|
|
|
|
|
|
|
2323 |
'top_classifications': []
|
2324 |
}
|
2325 |
|
2326 |
+
classifier = load_model("zero-shot-classification", "facebook/bart-large-mnli")
|
|
|
|
|
|
|
2327 |
|
2328 |
# Enhanced legal categories with more specific indicators
|
2329 |
categories = [
|
|
|
2372 |
})
|
2373 |
|
2374 |
# Generate summary using BART
|
2375 |
+
summary = summarize_text(legal_text[:1000])
|
|
|
|
|
2376 |
|
2377 |
# Calculate legal metrics with weighted scoring
|
2378 |
legal_metrics = {
|
|
|
2441 |
(1 - legal_metrics['risk_level']) * 0.2
|
2442 |
))
|
2443 |
|
2444 |
+
return {
|
2445 |
+
'assessment': top_classifications[0]['classification'] if top_classifications else 'could not assess',
|
2446 |
+
'confidence': float(overall_confidence),
|
2447 |
+
'summary': summary,
|
2448 |
+
'completeness_score': int(completeness_score),
|
2449 |
+
'potential_issues': potential_issues,
|
2450 |
+
'legal_metrics': legal_metrics,
|
2451 |
+
'reasoning': '. '.join(reasoning_parts),
|
2452 |
+
'top_classifications': top_classifications
|
2453 |
+
}
|
|
|
|
|
|
|
|
|
|
|
2454 |
except Exception as e:
|
2455 |
logger.error(f"Error analyzing legal details: {str(e)}")
|
2456 |
return {
|
2457 |
+
'assessment': 'could not assess',
|
2458 |
'confidence': 0.0,
|
2459 |
+
'summary': 'Error analyzing legal details',
|
2460 |
'completeness_score': 0,
|
2461 |
+
'potential_issues': False,
|
2462 |
+
'legal_metrics': {},
|
2463 |
+
'reasoning': 'Technical error occurred during analysis',
|
|
|
|
|
|
|
|
|
|
|
|
|
2464 |
'top_classifications': []
|
2465 |
}
|
2466 |
|
|
|
2944 |
|
2945 |
def check_if_property_related(text):
|
2946 |
try:
|
2947 |
+
classifier = load_model("zero-shot-classification", "facebook/bart-large-mnli")
|
2948 |
result = classifier(text[:1000], ["property-related", "non-property-related"])
|
2949 |
is_related = result['labels'][0] == "property-related"
|
2950 |
return {
|
|
|
2958 |
'confidence': 0.0
|
2959 |
}
|
2960 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2961 |
if __name__ == '__main__':
|
2962 |
# Run Flask app
|
2963 |
app.run(host='0.0.0.0', port=8000, debug=True, use_reloader=False)
|