File size: 6,335 Bytes
c2e1efa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Code source: Gaël Varoquaux
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
import gradio as gr
from matplotlib.colors import ListedColormap
plt.switch_backend("agg")

font1 = {'family':'DejaVu Sans','size':20}

def create_data(random, size_num, x_min, x_max, y_min, y_max):
    #emulate some random data
    if random:
        size_num = int(size_num)
        x = np.random.uniform(x_min, x_max, size=(size_num, 1))
        y = np.random.uniform(y_min, y_max, size=(size_num, 1))
        
        X = np.hstack((x, y))
        Y = [0] * int(size_num/2) + [1] * int(size_num/2)
    else:
        X = np.c_[
            (0.4, -0.7),
            (-1.5, -1),
            (-1.4, -0.9),
            (-1.3, -1.2),
            (-1.5, 0.2),
            (-1.2, -0.4),
            (-0.5, 1.2),
            (-1.5, 2.1),
            (1, 1),
            # --
            (1.3, 0.8),
            (1.5, 0.5),
            (0.2, -2),
            (0.5, -2.4),
            (0.2, -2.3),
            (0, -2.7),
            (1.3, 2.8),
        ].T

        Y = [0] * 8 + [1] * 8
    return X, Y

# fit the model
def clf_kernel(color1, color2, dpi, size_num = None, x_min = None, 
                x_max = None, y_min = None,
                y_max = None, random = False):

    if size_num is not None or x_min is not None or x_max is not None or y_min is not None or y_max is not None:
        random = True

    X, Y = create_data(random, size_num, x_min, x_max, y_min, y_max)

    kernels = ["linear", "poly", "rbf"]
          
    # plot the line, the points, and the nearest vectors to the plane  
    fig, axs = plt.subplots(1,3, figsize = (16,8), facecolor='none', dpi = res[dpi])
    
    cmap = ListedColormap([color1, color2], N=2, name = 'braincell')
    for i, kernel in enumerate(kernels):
        clf = svm.SVC(kernel=kernel, gamma=2)
        clf.fit(X, Y)
        axs[i].scatter(
            clf.support_vectors_[:, 0],
            clf.support_vectors_[:, 1],
            s=80,
            facecolors="none",
            zorder=10,
            edgecolors="k",
        )
        axs[i].scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=cmap, edgecolors="k")

        axs[i].axis("tight")
        x_min = -3
        x_max = 3
        y_min = -3
        y_max = 3

        XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
        Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])

        # Put the result into a color plot
        Z = Z.reshape(XX.shape)
        axs[i].pcolormesh(XX, YY, Z > 0, cmap=cmap)
        axs[i].contour(
            XX,
            YY,
            Z,
            colors=["k", "k", "k"],
            linestyles=["--", "-", "--"],
            levels=[-0.5, 0, 0.5],
        )

        axs[i].set_xlim(x_min, x_max)
        axs[i].set_ylim(y_min, y_max)

        axs[i].set_xticks(())
        axs[i].set_yticks(())
        axs[i].set_title('Type of kernel: ' + kernel, 
                    color = "white", fontdict = font1, pad=20,  
                    bbox=dict(boxstyle="round,pad=0.3", 
                            color = "#6366F1"))
        
        plt.close()
    return fig, np.round(X, decimals=2)

intro = """<h1 style="text-align: center;">🤗 Introducing SVM-Kernels 🤗</h1>
"""
desc = """<h3 style="text-align: center;">Three different types of SVM-Kernels are displayed below. 
The polynomial and RBF are especially useful when the data-points are not linearly separable. </h3>
"""
notice = """<br><div style = "text-align: left;"> <em>Notice: Run the model on example data or use <strong>Randomize data</strong> 
button below to check out the model on randomized data-points. Any changes to visual parameters will reset the data!</em></div>"""

notice2 = """<br><div style = "text-align: left;"> <em>Notice:  The data points are categorized into two distinct classes, and they are evenly distributed on the plots to visually represent these classes.</em></div>"""

made ="""<div style="text-align: center;">
  <p>Made with ❤</p>"""

link = """<div style="text-align: center;">
<a href="https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html#sphx-glr-auto-examples-svm-plot-svm-kernels-py" target="_blank" rel="noopener noreferrer">
Demo is based on this script from scikit-learn documentation</a>"""

res = {'Small': 50, 'Medium': 75, 'Large': 100}

with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo",
                                    secondary_hue="violet",
                                    neutral_hue="slate",
                                    font =  gr.themes.GoogleFont("Inter")),
               title="SVM-Kernels") as demo:
    
    gr.HTML(intro)
    gr.HTML(desc)
    
    with gr.Tab("Plotted results"):
        plot = gr.Plot(label="Kernel comparison:")
    with gr.Tab("Data coordinates"):
        gr.HTML(notice2)
        X = gr.Numpy(headers = ['x','y'], interactive=False)
    
    with gr.Column():
        
        with gr.Accordion(label = 'Randomize data'):
            gr.HTML(notice)
            samples = gr.Slider(4, 16, value = 8, step = 2, label = "Number of samples:")
            x_min = gr.Slider(-3, 0, value=-2, step=0.1, label="X Min:")
            x_max = gr.Slider(0, 3, value=2, step=0.1, label="X Max:")
            y_min = gr.Slider(-3, 0, value=-2, step=0.1, label="Y Min:")
            y_max = gr.Slider(0, 3, value=2, step=0.1, label="Y Max:")
            random = gr.Button("Randomize data")
        

        
        
        with gr.Accordion(label = "Visual parameters"):
            with gr.Row():
                color1 = gr.ColorPicker(label = 'Pick color one:', value = '#9abfd8')
                color2 = gr.ColorPicker(label = 'Pick color two:', value = '#371c4b')
            #dpi = gr.Slider(50, 100, value = 75, step = 1, label = "Set the resolution: ")
            dpi = gr.Radio(list(res.keys()), value = 'Medium', label = "Select the plot size:")
      
    params2 = [color1, color2, dpi]

    random.click(fn=clf_kernel, inputs=[color1, color2, dpi,samples, x_min, x_max, y_min, y_max], outputs=[plot,X]) 

    for i in params2:
        i.change(fn=clf_kernel, inputs=[color1, color2,dpi], outputs=[plot, X])
    
    demo.load(fn=clf_kernel, inputs=[color1, color2, dpi], outputs=[plot,X]) 
    gr.HTML(made)
    gr.HTML(link)
    
demo.launch()