Spaces:
Sleeping
Sleeping
File size: 6,335 Bytes
c2e1efa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# Code source: Gaël Varoquaux
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
import gradio as gr
from matplotlib.colors import ListedColormap
plt.switch_backend("agg")
font1 = {'family':'DejaVu Sans','size':20}
def create_data(random, size_num, x_min, x_max, y_min, y_max):
#emulate some random data
if random:
size_num = int(size_num)
x = np.random.uniform(x_min, x_max, size=(size_num, 1))
y = np.random.uniform(y_min, y_max, size=(size_num, 1))
X = np.hstack((x, y))
Y = [0] * int(size_num/2) + [1] * int(size_num/2)
else:
X = np.c_[
(0.4, -0.7),
(-1.5, -1),
(-1.4, -0.9),
(-1.3, -1.2),
(-1.5, 0.2),
(-1.2, -0.4),
(-0.5, 1.2),
(-1.5, 2.1),
(1, 1),
# --
(1.3, 0.8),
(1.5, 0.5),
(0.2, -2),
(0.5, -2.4),
(0.2, -2.3),
(0, -2.7),
(1.3, 2.8),
].T
Y = [0] * 8 + [1] * 8
return X, Y
# fit the model
def clf_kernel(color1, color2, dpi, size_num = None, x_min = None,
x_max = None, y_min = None,
y_max = None, random = False):
if size_num is not None or x_min is not None or x_max is not None or y_min is not None or y_max is not None:
random = True
X, Y = create_data(random, size_num, x_min, x_max, y_min, y_max)
kernels = ["linear", "poly", "rbf"]
# plot the line, the points, and the nearest vectors to the plane
fig, axs = plt.subplots(1,3, figsize = (16,8), facecolor='none', dpi = res[dpi])
cmap = ListedColormap([color1, color2], N=2, name = 'braincell')
for i, kernel in enumerate(kernels):
clf = svm.SVC(kernel=kernel, gamma=2)
clf.fit(X, Y)
axs[i].scatter(
clf.support_vectors_[:, 0],
clf.support_vectors_[:, 1],
s=80,
facecolors="none",
zorder=10,
edgecolors="k",
)
axs[i].scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=cmap, edgecolors="k")
axs[i].axis("tight")
x_min = -3
x_max = 3
y_min = -3
y_max = 3
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])
# Put the result into a color plot
Z = Z.reshape(XX.shape)
axs[i].pcolormesh(XX, YY, Z > 0, cmap=cmap)
axs[i].contour(
XX,
YY,
Z,
colors=["k", "k", "k"],
linestyles=["--", "-", "--"],
levels=[-0.5, 0, 0.5],
)
axs[i].set_xlim(x_min, x_max)
axs[i].set_ylim(y_min, y_max)
axs[i].set_xticks(())
axs[i].set_yticks(())
axs[i].set_title('Type of kernel: ' + kernel,
color = "white", fontdict = font1, pad=20,
bbox=dict(boxstyle="round,pad=0.3",
color = "#6366F1"))
plt.close()
return fig, np.round(X, decimals=2)
intro = """<h1 style="text-align: center;">🤗 Introducing SVM-Kernels 🤗</h1>
"""
desc = """<h3 style="text-align: center;">Three different types of SVM-Kernels are displayed below.
The polynomial and RBF are especially useful when the data-points are not linearly separable. </h3>
"""
notice = """<br><div style = "text-align: left;"> <em>Notice: Run the model on example data or use <strong>Randomize data</strong>
button below to check out the model on randomized data-points. Any changes to visual parameters will reset the data!</em></div>"""
notice2 = """<br><div style = "text-align: left;"> <em>Notice: The data points are categorized into two distinct classes, and they are evenly distributed on the plots to visually represent these classes.</em></div>"""
made ="""<div style="text-align: center;">
<p>Made with ❤</p>"""
link = """<div style="text-align: center;">
<a href="https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html#sphx-glr-auto-examples-svm-plot-svm-kernels-py" target="_blank" rel="noopener noreferrer">
Demo is based on this script from scikit-learn documentation</a>"""
res = {'Small': 50, 'Medium': 75, 'Large': 100}
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo",
secondary_hue="violet",
neutral_hue="slate",
font = gr.themes.GoogleFont("Inter")),
title="SVM-Kernels") as demo:
gr.HTML(intro)
gr.HTML(desc)
with gr.Tab("Plotted results"):
plot = gr.Plot(label="Kernel comparison:")
with gr.Tab("Data coordinates"):
gr.HTML(notice2)
X = gr.Numpy(headers = ['x','y'], interactive=False)
with gr.Column():
with gr.Accordion(label = 'Randomize data'):
gr.HTML(notice)
samples = gr.Slider(4, 16, value = 8, step = 2, label = "Number of samples:")
x_min = gr.Slider(-3, 0, value=-2, step=0.1, label="X Min:")
x_max = gr.Slider(0, 3, value=2, step=0.1, label="X Max:")
y_min = gr.Slider(-3, 0, value=-2, step=0.1, label="Y Min:")
y_max = gr.Slider(0, 3, value=2, step=0.1, label="Y Max:")
random = gr.Button("Randomize data")
with gr.Accordion(label = "Visual parameters"):
with gr.Row():
color1 = gr.ColorPicker(label = 'Pick color one:', value = '#9abfd8')
color2 = gr.ColorPicker(label = 'Pick color two:', value = '#371c4b')
#dpi = gr.Slider(50, 100, value = 75, step = 1, label = "Set the resolution: ")
dpi = gr.Radio(list(res.keys()), value = 'Medium', label = "Select the plot size:")
params2 = [color1, color2, dpi]
random.click(fn=clf_kernel, inputs=[color1, color2, dpi,samples, x_min, x_max, y_min, y_max], outputs=[plot,X])
for i in params2:
i.change(fn=clf_kernel, inputs=[color1, color2,dpi], outputs=[plot, X])
demo.load(fn=clf_kernel, inputs=[color1, color2, dpi], outputs=[plot,X])
gr.HTML(made)
gr.HTML(link)
demo.launch() |