import numpy as np import matplotlib.pyplot as plt from sklearn import svm import gradio as gr from PIL import Image def calculate_score(clf): xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500)) X_test = np.c_[xx.ravel(), yy.ravel()] Y_test = np.logical_xor(xx.ravel() > 0, yy.ravel() > 0) return clf.score(X_test, Y_test) def getColorMap(kernel, gamma): # prepare the training dataset np.random.seed(0) X = np.random.randn(300, 2) Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) # fit the model clf = svm.NuSVC(kernel=kernel, gamma=gamma) clf.fit(X, Y) #create a grid for the plotting the decision function xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500)) # plot the decision function for each datapoint on the grid Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.figure(figsize=(10, 4)) plt.imshow( Z, interpolation="nearest", extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect="auto", origin="lower", cmap=plt.cm.PuOr_r, ) contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linestyles="dashed") plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired, edgecolors='k') plt.title(f"Decision function for Non-Linear SVC with the {kernel} kernel and '{gamma}' gamma ", fontsize='14') #title plt.xlabel("X",fontsize='13') #adds a label in the x axis plt.ylabel("Y",fontsize='13') #adds a label in the y axis return plt, calculate_score(clf) #XOR_TABLE markdown text XOR_TABLE = """ <style type="text/css"> .tg {border-collapse:collapse;border-spacing:10PX;width:50%;margin:auto} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-c3ow{border-color:inherit;text-align:center} td, th {padding-left: 1rem} </style> <BR> <H3>Table explaining the 'XOR' operator</H3> <table class="tg"> <thead> <tr> <th class="tg-c3ow">A</th> <th class="tg-c3ow">B</th> <th class="tg-c3ow">A XOR B</th> </tr> </thead> <tbody> <tr> <td class="tg-c3ow">0</td> <td class="tg-c3ow">0</td> <td class="tg-c3ow">0</td> </tr> <tr> <td class="tg-c3ow">0</td> <td class="tg-c3ow">1</td> <td class="tg-c3ow">1</td> </tr> <tr> <td class="tg-c3ow">1</td> <td class="tg-c3ow">0</td> <td class="tg-c3ow">1</td> </tr> <tr> <td class="tg-c3ow">1</td> <td class="tg-c3ow">1</td> <td class="tg-c3ow">0</td> </tr> </tbody> </table> """ with gr.Blocks() as demo: gr.Markdown("## Learning the XOR function: An application of Binary Classification using Non-linear SVM") gr.Markdown("### This demo is based on this [scikit-learn example](https://scikit-learn.org/stable/auto_examples/svm/plot_svm_nonlinear.html#sphx-glr-auto-examples-svm-plot-svm-nonlinear-py).") gr.Markdown("### In this demo, we use a non-linear SVC (Support Vector Classifier) to learn the decision function of the XOR operator.") gr.Markdown("### Furthermore, we observe that we get different decision function plots by varying the Kernel and Gamma hyperparameters of the non-linear SVC.") gr.Markdown("### Feel free to experiment with kernel and gamma values below to see how the quality of the decision function changes with the hyperparameters.") inp1 = gr.Radio(['poly', 'rbf', 'sigmoid'], label="Kernel", info="Choose a kernel", value="poly") inp2 = gr.Radio(['scale', 'auto'], label="Gamma", info="Choose a gamma value", value="scale") with gr.Row().style(equal_height=True): with gr.Column(scale=2): plot = gr.Plot(label=f"Decision function plot") with gr.Column(scale=1): num = gr.Textbox(label="Test Accuracy") inp1.change(getColorMap, inputs=[inp1, inp2], outputs=[plot, num]) inp2.change(getColorMap, inputs=[inp1, inp2], outputs=[plot, num]) demo.load(getColorMap, inputs=[inp1, inp2], outputs=[plot, num]) gr.HTML(XOR_TABLE) if __name__ == "__main__": demo.launch()