Spaces:
No application file
No application file
application code
Browse files
model.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Code was Designed and Developed by 'SKAV TECH' Company
|
2 |
+
import os
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# Force TensorFlow to use CPU
|
9 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
10 |
+
|
11 |
+
# Load the pre-trained model
|
12 |
+
model = tf.keras.models.load_model("maheshbabu.h5")
|
13 |
+
|
14 |
+
# Define class labels
|
15 |
+
classes = ["Normal", "Cancerous"]
|
16 |
+
|
17 |
+
# Prediction function
|
18 |
+
def predict(images):
|
19 |
+
results = []
|
20 |
+
cancerous_count = 0
|
21 |
+
|
22 |
+
for image in images:
|
23 |
+
try:
|
24 |
+
# Load and preprocess the image
|
25 |
+
img = load_img(image, target_size=(224, 224)) # Resize image
|
26 |
+
img_array = img_to_array(img) / 255.0 # Normalize pixel values
|
27 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
28 |
+
|
29 |
+
# Perform prediction
|
30 |
+
predictions = model.predict(img_array)
|
31 |
+
class_idx = np.argmax(predictions[0]) # Get index of highest probability
|
32 |
+
confidence = predictions[0][class_idx] # Get confidence score
|
33 |
+
|
34 |
+
result = f"{classes[class_idx]} ({confidence:.2f})"
|
35 |
+
results.append(result)
|
36 |
+
|
37 |
+
if classes[class_idx] == "Cancerous":
|
38 |
+
cancerous_count += 1
|
39 |
+
except Exception as e:
|
40 |
+
results.append(f"Error processing image: {str(e)}")
|
41 |
+
|
42 |
+
# Generate final summary
|
43 |
+
if cancerous_count > 0:
|
44 |
+
summary = f"Warning: {cancerous_count} out of {len(images)} samples are Cancerous. Please consult a doctor."
|
45 |
+
else:
|
46 |
+
summary = "All samples are Normal. No signs of cancer detected."
|
47 |
+
|
48 |
+
return results, summary
|
49 |
+
|
50 |
+
# Set up the Gradio interface
|
51 |
+
interface = gr.Interface(
|
52 |
+
fn=predict,
|
53 |
+
inputs=gr.Image(type="filepath", label="Upload Blood Cell Images", tool=None, shape=None, source="upload", multiple=True), # Allow multiple images
|
54 |
+
outputs=[
|
55 |
+
gr.JSON(label="Detailed Results"),
|
56 |
+
gr.Textbox(label="Final Summary")
|
57 |
+
],
|
58 |
+
title="Enhanced Blood Cancer Detection",
|
59 |
+
description=(
|
60 |
+
"Upload 5-10 blood cell images to detect whether they are Normal or Cancerous. "
|
61 |
+
"The application uses a deep learning model to analyze each sample. "
|
62 |
+
"[Learn more about early cancer detection](https://www.cancer.org)."
|
63 |
+
),
|
64 |
+
live=True,
|
65 |
+
theme="compact"
|
66 |
+
)
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
interface.launch(server_port=7860, server_name="0.0.0.0", share=True)
|