import gradio as gr import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from peft import AutoPeftModelForCausalLM from datasets import load_dataset from huggingface_hub import login login(token=os.environ.get('HF_TOKEN', None)) model_name = "skaltenp/Meta-Llama-3-8B-sepsis_cases-199900595" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="cuda", trust_remote_code=True, #token=True, ) model.eval() #model = AutoPeftModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token_id = tokenizer.eos_token_id train = load_dataset("skaltenp/sepsis_cases")["train"] def prepare_sample_text(example, tokenizer, remove_indent=False, start=None, end=None): """Prepare the text from a sample of the dataset.""" thread = example["event_list"] if start != None and end != None: thread = thread[start:end] text = "" for message in thread: text += f"{message}{tokenizer.eos_token}\n" return text dataset = load_dataset( "skaltenp/sepsis_cases", token=True, download_mode='force_redownload' ) train_data = dataset["train"].train_test_split(train_size=0.8, shuffle=True, seed=199900595) test_data = train_data["test"] train_data = train_data["train"].train_test_split(train_size=0.8, shuffle=True, seed=199900595) valid_data = train_data["test"] train_data = train_data["train"] print(len(test_data[0]["event_list"]), len(test_data[4]["event_list"]), len(test_data[50]["event_list"])) def generate_answer(question): #inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") inputs = tokenizer(question, return_tensors="pt") inputs.to("cuda") outputs = model.generate(**inputs, max_length=8192, num_return_sequences=1, do_sample=True) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer iface = gr.Interface( fn=generate_answer, inputs="text", outputs="text", title="Straight Outta Logs", examples = [prepare_sample_text(test_data[0], tokenizer, start=0, end=1), prepare_sample_text(test_data[4], tokenizer, start=0, end=2), prepare_sample_text(test_data[50], tokenizer, start=0, end=3)], description="Use the examples or copy own sepsis case example", ) iface.launch(share=True) # Deploy the interface