|
import gradio as gr |
|
import os |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
from peft import AutoPeftModelForCausalLM |
|
from datasets import load_dataset |
|
from huggingface_hub import login |
|
|
|
login(token=os.environ.get('HF_TOKEN', None)) |
|
|
|
model_name = "skaltenp/Meta-Llama-3-8B-sepsis_cases-199900595" |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.float16, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
quantization_config=bnb_config, |
|
device_map="cuda", |
|
trust_remote_code=True, |
|
|
|
) |
|
model.eval() |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
train = load_dataset("skaltenp/sepsis_cases")["train"] |
|
|
|
def prepare_sample_text(example, tokenizer, remove_indent=False, start=None, end=None): |
|
"""Prepare the text from a sample of the dataset.""" |
|
thread = example["event_list"] |
|
if start != None and end != None: |
|
thread = thread[start:end] |
|
text = "" |
|
for message in thread: |
|
text += f"{message}{tokenizer.eos_token}\n" |
|
return text |
|
|
|
dataset = load_dataset( |
|
"skaltenp/sepsis_cases", |
|
token=True, |
|
download_mode='force_redownload' |
|
) |
|
train_data = dataset["train"].train_test_split(train_size=0.8, shuffle=True, seed=199900595) |
|
test_data = train_data["test"] |
|
train_data = train_data["train"].train_test_split(train_size=0.8, shuffle=True, seed=199900595) |
|
valid_data = train_data["test"] |
|
train_data = train_data["train"] |
|
|
|
print(len(test_data[0]["event_list"]), len(test_data[4]["event_list"]), len(test_data[50]["event_list"])) |
|
|
|
def generate_answer(question): |
|
|
|
inputs = tokenizer(question, return_tensors="pt") |
|
inputs.to("cuda") |
|
outputs = model.generate(**inputs, max_length=8192, num_return_sequences=1, do_sample=True) |
|
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return answer |
|
|
|
iface = gr.Interface( |
|
fn=generate_answer, |
|
inputs="text", |
|
outputs="text", |
|
title="Straight Outta Logs", |
|
examples = [prepare_sample_text(test_data[0], tokenizer, start=0, end=1), prepare_sample_text(test_data[4], tokenizer, start=0, end=2), prepare_sample_text(test_data[50], tokenizer, start=0, end=3)], |
|
description="Use the examples or copy own sepsis case example", |
|
) |
|
|
|
iface.launch(share=True) |