skaltenp's picture
Update app.py
544b5dc verified
import gradio as gr
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import AutoPeftModelForCausalLM
from datasets import load_dataset
from huggingface_hub import login
login(token=os.environ.get('HF_TOKEN', None))
model_name = "skaltenp/Meta-Llama-3-8B-sepsis_cases-199900595"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="cuda",
trust_remote_code=True,
#token=True,
)
model.eval()
#model = AutoPeftModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token_id = tokenizer.eos_token_id
train = load_dataset("skaltenp/sepsis_cases")["train"]
def prepare_sample_text(example, tokenizer, remove_indent=False, start=None, end=None):
"""Prepare the text from a sample of the dataset."""
thread = example["event_list"]
if start != None and end != None:
thread = thread[start:end]
text = ""
for message in thread:
text += f"{message}{tokenizer.eos_token}\n"
return text
dataset = load_dataset(
"skaltenp/sepsis_cases",
token=True,
download_mode='force_redownload'
)
train_data = dataset["train"].train_test_split(train_size=0.8, shuffle=True, seed=199900595)
test_data = train_data["test"]
train_data = train_data["train"].train_test_split(train_size=0.8, shuffle=True, seed=199900595)
valid_data = train_data["test"]
train_data = train_data["train"]
print(len(test_data[0]["event_list"]), len(test_data[4]["event_list"]), len(test_data[50]["event_list"]))
def generate_answer(question):
#inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
inputs = tokenizer(question, return_tensors="pt")
inputs.to("cuda")
outputs = model.generate(**inputs, max_length=8192, num_return_sequences=1, do_sample=True)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
iface = gr.Interface(
fn=generate_answer,
inputs="text",
outputs="text",
title="Straight Outta Logs",
examples = [prepare_sample_text(test_data[0], tokenizer, start=0, end=1), prepare_sample_text(test_data[4], tokenizer, start=0, end=2), prepare_sample_text(test_data[50], tokenizer, start=0, end=3)],
description="Use the examples or copy own sepsis case example",
)
iface.launch(share=True) # Deploy the interface