Spaces:
Sleeping
Sleeping
usue chat pipeline instead of model and tokenizer individually
Browse files
app.py
CHANGED
|
@@ -6,12 +6,11 @@ from itertools import islice
|
|
| 6 |
from datetime import datetime
|
| 7 |
import gradio as gr
|
| 8 |
import torch
|
| 9 |
-
from transformers import
|
| 10 |
from duckduckgo_search import DDGS
|
| 11 |
import spaces # Import spaces early to enable ZeroGPU support
|
| 12 |
|
| 13 |
-
# Disable GPU visibility if you wish to force CPU usage
|
| 14 |
-
# (Not strictly needed for ZeroGPU as the decorator handles allocation)
|
| 15 |
# os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
| 16 |
|
| 17 |
# ------------------------------
|
|
@@ -22,9 +21,6 @@ cancel_event = threading.Event()
|
|
| 22 |
# ------------------------------
|
| 23 |
# Torch-Compatible Model Definitions with Adjusted Descriptions
|
| 24 |
# ------------------------------
|
| 25 |
-
# ------------------------------
|
| 26 |
-
# Torch-Compatible Model Definitions (Cleaned)
|
| 27 |
-
# ------------------------------
|
| 28 |
MODELS = {
|
| 29 |
"Taiwan-tinyllama-v1.0-chat": {
|
| 30 |
"repo_id": "DavidLanz/Taiwan-tinyllama-v1.0-chat",
|
|
@@ -72,34 +68,35 @@ MODELS = {
|
|
| 72 |
},
|
| 73 |
}
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
| 85 |
selected_model = MODELS[model_name]
|
| 86 |
-
#
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
return model, tokenizer
|
| 98 |
|
| 99 |
-
# ------------------------------
|
| 100 |
-
# Web Search Context Retrieval Function
|
| 101 |
-
# ------------------------------
|
| 102 |
def retrieve_context(query, max_results=6, max_chars_per_result=600):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
try:
|
| 104 |
with DDGS() as ddgs:
|
| 105 |
results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))
|
|
@@ -113,23 +110,31 @@ def retrieve_context(query, max_results=6, max_chars_per_result=600):
|
|
| 113 |
return ""
|
| 114 |
|
| 115 |
# ------------------------------
|
| 116 |
-
# Chat Response Generation with ZeroGPU
|
| 117 |
# ------------------------------
|
| 118 |
-
@spaces.GPU(duration=60)
|
| 119 |
def chat_response(user_message, chat_history, system_prompt, enable_search,
|
| 120 |
max_results, max_chars, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty):
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
cancel_event.clear()
|
| 123 |
|
| 124 |
-
#
|
| 125 |
-
|
| 126 |
-
|
| 127 |
|
| 128 |
-
# Retrieve web search context
|
| 129 |
debug_message = ""
|
|
|
|
| 130 |
if enable_search:
|
| 131 |
debug_message = "Initiating web search..."
|
| 132 |
-
yield
|
| 133 |
search_result = [""]
|
| 134 |
def do_search():
|
| 135 |
search_result[0] = retrieve_context(user_message, max_results, max_chars)
|
|
@@ -139,71 +144,46 @@ def chat_response(user_message, chat_history, system_prompt, enable_search,
|
|
| 139 |
retrieved_context = search_result[0]
|
| 140 |
if retrieved_context:
|
| 141 |
debug_message = f"Web search results:\n\n{retrieved_context}"
|
|
|
|
|
|
|
| 142 |
else:
|
| 143 |
debug_message = "Web search returned no results or timed out."
|
| 144 |
else:
|
| 145 |
-
retrieved_context = ""
|
| 146 |
debug_message = "Web search disabled."
|
| 147 |
|
| 148 |
-
# Augment the prompt with search context if available.
|
| 149 |
-
if enable_search and retrieved_context:
|
| 150 |
-
augmented_user_input = (
|
| 151 |
-
f"{system_prompt.strip()}\n\n"
|
| 152 |
-
"Use the following recent web search context to help answer the query:\n\n"
|
| 153 |
-
f"{retrieved_context}\n\n"
|
| 154 |
-
f"User Query: {user_message}"
|
| 155 |
-
)
|
| 156 |
-
else:
|
| 157 |
-
augmented_user_input = f"{system_prompt.strip()}\n\nUser Query: {user_message}"
|
| 158 |
-
|
| 159 |
# Append a placeholder for the assistant's response.
|
| 160 |
-
|
| 161 |
|
| 162 |
try:
|
| 163 |
-
# Load the
|
| 164 |
-
|
| 165 |
-
# Move the model to GPU (using .to('cuda')) inside the GPU-decorated function.
|
| 166 |
-
model = model.to('cuda')
|
| 167 |
|
| 168 |
-
#
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
input_ids,
|
| 176 |
-
attention_mask=attention_mask,
|
| 177 |
-
max_new_tokens=max_tokens,
|
| 178 |
-
temperature=temperature,
|
| 179 |
-
top_k=top_k,
|
| 180 |
-
top_p=top_p,
|
| 181 |
-
repetition_penalty=repeat_penalty,
|
| 182 |
-
do_sample=True,
|
| 183 |
-
pad_token_id=tokenizer.pad_token_id,
|
| 184 |
-
)
|
| 185 |
-
# Decode the generated tokens.
|
| 186 |
-
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 187 |
-
# Remove the original prompt to isolate the assistant's reply.
|
| 188 |
-
assistant_text = generated_text[len(augmented_user_input):].strip()
|
| 189 |
|
| 190 |
-
#
|
| 191 |
-
|
| 192 |
-
assistant_message = ""
|
| 193 |
-
for word in words:
|
| 194 |
-
if cancel_event.is_set():
|
| 195 |
-
assistant_message += "\n\n[Response generation cancelled by user]"
|
| 196 |
-
internal_history[-1]["content"] = assistant_message
|
| 197 |
-
yield internal_history, debug_message
|
| 198 |
-
return
|
| 199 |
-
assistant_message += word + " "
|
| 200 |
-
internal_history[-1]["content"] = assistant_message
|
| 201 |
-
yield internal_history, debug_message
|
| 202 |
-
time.sleep(0.05) # Short delay to simulate streaming
|
| 203 |
except Exception as e:
|
| 204 |
-
|
| 205 |
-
yield
|
| 206 |
-
|
|
|
|
| 207 |
|
| 208 |
# ------------------------------
|
| 209 |
# Cancel Function
|
|
@@ -265,7 +245,7 @@ with gr.Blocks(title="LLM Inference with ZeroGPU") as demo:
|
|
| 265 |
clear_button.click(fn=clear_chat, outputs=[chatbot, msg_input, search_debug])
|
| 266 |
cancel_button.click(fn=cancel_generation, outputs=search_debug)
|
| 267 |
|
| 268 |
-
# Submission: the chat_response function is now
|
| 269 |
msg_input.submit(
|
| 270 |
fn=chat_response,
|
| 271 |
inputs=[msg_input, chatbot, system_prompt_text, enable_search_checkbox,
|
|
|
|
| 6 |
from datetime import datetime
|
| 7 |
import gradio as gr
|
| 8 |
import torch
|
| 9 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 10 |
from duckduckgo_search import DDGS
|
| 11 |
import spaces # Import spaces early to enable ZeroGPU support
|
| 12 |
|
| 13 |
+
# Optional: Disable GPU visibility if you wish to force CPU usage
|
|
|
|
| 14 |
# os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
| 15 |
|
| 16 |
# ------------------------------
|
|
|
|
| 21 |
# ------------------------------
|
| 22 |
# Torch-Compatible Model Definitions with Adjusted Descriptions
|
| 23 |
# ------------------------------
|
|
|
|
|
|
|
|
|
|
| 24 |
MODELS = {
|
| 25 |
"Taiwan-tinyllama-v1.0-chat": {
|
| 26 |
"repo_id": "DavidLanz/Taiwan-tinyllama-v1.0-chat",
|
|
|
|
| 68 |
},
|
| 69 |
}
|
| 70 |
|
| 71 |
+
# Global cache for pipelines to avoid re-loading.
|
| 72 |
+
PIPELINES = {}
|
| 73 |
|
| 74 |
+
def load_pipeline(model_name):
|
| 75 |
+
"""
|
| 76 |
+
Load and cache a transformers pipeline for chat/text-generation.
|
| 77 |
+
Uses the model's repo_id from MODELS and caches the pipeline for future use.
|
| 78 |
+
"""
|
| 79 |
+
global PIPELINES
|
| 80 |
+
if model_name in PIPELINES:
|
| 81 |
+
return PIPELINES[model_name]
|
| 82 |
selected_model = MODELS[model_name]
|
| 83 |
+
# Create a chat-style text-generation pipeline.
|
| 84 |
+
pipe = pipeline(
|
| 85 |
+
task="text-generation",
|
| 86 |
+
model=selected_model["repo_id"],
|
| 87 |
+
tokenizer=selected_model["repo_id"],
|
| 88 |
+
trust_remote_code=True,
|
| 89 |
+
torch_dtype=torch.bfloat16,
|
| 90 |
+
device_map="auto"
|
| 91 |
+
)
|
| 92 |
+
PIPELINES[model_name] = pipe
|
| 93 |
+
return pipe
|
|
|
|
| 94 |
|
|
|
|
|
|
|
|
|
|
| 95 |
def retrieve_context(query, max_results=6, max_chars_per_result=600):
|
| 96 |
+
"""
|
| 97 |
+
Retrieve recent web search context for the given query using DuckDuckGo.
|
| 98 |
+
Returns a formatted string with search results.
|
| 99 |
+
"""
|
| 100 |
try:
|
| 101 |
with DDGS() as ddgs:
|
| 102 |
results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))
|
|
|
|
| 110 |
return ""
|
| 111 |
|
| 112 |
# ------------------------------
|
| 113 |
+
# Chat Response Generation with ZeroGPU using Pipeline
|
| 114 |
# ------------------------------
|
| 115 |
+
@spaces.GPU(duration=60)
|
| 116 |
def chat_response(user_message, chat_history, system_prompt, enable_search,
|
| 117 |
max_results, max_chars, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty):
|
| 118 |
+
"""
|
| 119 |
+
Generate a chat response by utilizing a transformers pipeline.
|
| 120 |
+
|
| 121 |
+
- Appends the user's message to the conversation history.
|
| 122 |
+
- Optionally retrieves web search context and inserts it as an additional system message.
|
| 123 |
+
- Uses a cached pipeline (loaded via load_pipeline) to generate a response.
|
| 124 |
+
- Returns the updated conversation history and a debug message.
|
| 125 |
+
"""
|
| 126 |
cancel_event.clear()
|
| 127 |
|
| 128 |
+
# Build conversation list from chat history.
|
| 129 |
+
conversation = list(chat_history) if chat_history else []
|
| 130 |
+
conversation.append({"role": "user", "content": user_message})
|
| 131 |
|
| 132 |
+
# Retrieve web search context if enabled.
|
| 133 |
debug_message = ""
|
| 134 |
+
retrieved_context = ""
|
| 135 |
if enable_search:
|
| 136 |
debug_message = "Initiating web search..."
|
| 137 |
+
yield conversation, debug_message
|
| 138 |
search_result = [""]
|
| 139 |
def do_search():
|
| 140 |
search_result[0] = retrieve_context(user_message, max_results, max_chars)
|
|
|
|
| 144 |
retrieved_context = search_result[0]
|
| 145 |
if retrieved_context:
|
| 146 |
debug_message = f"Web search results:\n\n{retrieved_context}"
|
| 147 |
+
# Insert the search context as a system-level message immediately after the original system prompt.
|
| 148 |
+
conversation.insert(1, {"role": "system", "content": f"Web search context:\n{retrieved_context}"})
|
| 149 |
else:
|
| 150 |
debug_message = "Web search returned no results or timed out."
|
| 151 |
else:
|
|
|
|
| 152 |
debug_message = "Web search disabled."
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
# Append a placeholder for the assistant's response.
|
| 155 |
+
conversation.append({"role": "assistant", "content": ""})
|
| 156 |
|
| 157 |
try:
|
| 158 |
+
# Load the pipeline (cached) for the selected model.
|
| 159 |
+
pipe = load_pipeline(model_name)
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
# Use the pipeline directly with conversation history.
|
| 162 |
+
# Note: Many chat pipelines use internal chat templating to properly format the conversation.
|
| 163 |
+
response = pipe(
|
| 164 |
+
conversation,
|
| 165 |
+
max_new_tokens=max_tokens,
|
| 166 |
+
temperature=temperature,
|
| 167 |
+
top_k=top_k,
|
| 168 |
+
top_p=top_p,
|
| 169 |
+
repetition_penalty=repeat_penalty,
|
| 170 |
+
)
|
| 171 |
+
# Extract the assistant's reply.
|
| 172 |
+
try:
|
| 173 |
+
assistant_text = response[0]["generated_text"][-1]["content"]
|
| 174 |
+
except (KeyError, IndexError, TypeError):
|
| 175 |
+
assistant_text = response[0]["generated_text"]
|
| 176 |
|
| 177 |
+
# Update the conversation history.
|
| 178 |
+
conversation[-1]["content"] = assistant_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
+
# Yield the complete conversation history and the debug message.
|
| 181 |
+
yield conversation, debug_message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
except Exception as e:
|
| 183 |
+
conversation[-1]["content"] = f"Error: {e}"
|
| 184 |
+
yield conversation, debug_message
|
| 185 |
+
finally:
|
| 186 |
+
gc.collect()
|
| 187 |
|
| 188 |
# ------------------------------
|
| 189 |
# Cancel Function
|
|
|
|
| 245 |
clear_button.click(fn=clear_chat, outputs=[chatbot, msg_input, search_debug])
|
| 246 |
cancel_button.click(fn=cancel_generation, outputs=search_debug)
|
| 247 |
|
| 248 |
+
# Submission: the chat_response function is now used with the Transformers pipeline.
|
| 249 |
msg_input.submit(
|
| 250 |
fn=chat_response,
|
| 251 |
inputs=[msg_input, chatbot, system_prompt_text, enable_search_checkbox,
|