Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,011 Bytes
d3dcf57 96d55c9 d3dcf57 0d78f16 d3dcf57 e308804 d3dcf57 36f34bd d3dcf57 8d3277a dd67e44 8d3277a dd67e44 e308804 d3dcf57 36f34bd d3dcf57 8d3277a d3dcf57 6b709ca d3dcf57 d78a2b4 dd67e44 d3dcf57 e308804 d3dcf57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# Importing the requirements
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
from src.app.response import caption_image
# Image and input parameters
image = gr.Image(type="pil", label="Image")
max_new_tokens = gr.Slider(
minimum=20,
maximum=160,
value=80,
step=10,
label="Max Tokens",
info="Use larger values for detailed captions",
)
language = gr.Dropdown(
choices=["English", "Spanish", "French"],
value="English",
label="Language",
info="Select the caption language",
interactive=True,
)
sampling = gr.Checkbox(value=False, label="Sampling")
# Output for the interface
answer = gr.Textbox(label="Generated Caption", show_label=True, show_copy_button=True)
# Examples for the interface
examples = [
["images/cat.jpg", 100, "Spanish", False],
["images/dog.jpg", 80, "English", True],
["images/bird.jpg", 160, "French", False],
]
# Title, description, and article for the interface
title = "PaliGemma 2 Image Captioning"
description = "Gradio Demo for the PaliGemma 2 Vision Language Understanding and Generation model. This model generates natural language captions based on uploaded images. To use it, upload your image, select the desired parameters (or stick with the default settings), and click 'Submit.' You can also choose one of the examples to load a predefined image. For more information, please refer to the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2412.03555' target='_blank'>Model Paper</a> | <a href='https://huggingface.co/google/paligemma2-3b-ft-docci-448' target='_blank'>Model Page</a></p>"
# Launch the interface
interface = gr.Interface(
fn=caption_image,
inputs=[image, max_new_tokens, language, sampling],
outputs=answer,
examples=examples,
cache_examples=True,
cache_mode="lazy",
title=title,
description=description,
article=article,
theme="Monochrome",
flagging_mode="never",
)
interface.launch(debug=False)
|