Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from spaces import GPU
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
from peft import PeftModel
|
| 5 |
+
from snac import SNAC
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
# Config
|
| 9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
base_model_id = "canopylabs/3b-es_it-pretrain-research_release"
|
| 11 |
+
lora_model_id = "sirekist98/spanish_conversational_tts"
|
| 12 |
+
snac_model_id = "hubertsiuzdak/snac_24khz"
|
| 13 |
+
|
| 14 |
+
# Load models
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
| 16 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
+
base_model_id,
|
| 18 |
+
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
| 19 |
+
)
|
| 20 |
+
model = PeftModel.from_pretrained(base_model, lora_model_id)
|
| 21 |
+
model = model.to(device)
|
| 22 |
+
model.eval()
|
| 23 |
+
|
| 24 |
+
snac_model = SNAC.from_pretrained(snac_model_id).to(device)
|
| 25 |
+
|
| 26 |
+
# Speakers (sin emociones)
|
| 27 |
+
speakers = [
|
| 28 |
+
"Alex", "Carmen", "Daniel", "Diego", "Hugo", "Lucía", "María", "Pablo", "Sofía"
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
# Helper to decode tokens to audio
|
| 32 |
+
|
| 33 |
+
def decode_snac(code_list):
|
| 34 |
+
layer_1, layer_2, layer_3 = [], [], []
|
| 35 |
+
for i in range((len(code_list)+1)//7):
|
| 36 |
+
layer_1.append(code_list[7*i])
|
| 37 |
+
layer_2.append(code_list[7*i+1]-4096)
|
| 38 |
+
layer_3.append(code_list[7*i+2]-(2*4096))
|
| 39 |
+
layer_3.append(code_list[7*i+3]-(3*4096))
|
| 40 |
+
layer_2.append(code_list[7*i+4]-(4*4096))
|
| 41 |
+
layer_3.append(code_list[7*i+5]-(5*4096))
|
| 42 |
+
layer_3.append(code_list[7*i+6]-(6*4096))
|
| 43 |
+
|
| 44 |
+
# Obtener dispositivo del primer codebook
|
| 45 |
+
device_snac = snac_model.quantizer.quantizers[0].codebook.weight.device
|
| 46 |
+
|
| 47 |
+
layers = [
|
| 48 |
+
torch.tensor(layer_1).unsqueeze(0).to(device_snac),
|
| 49 |
+
torch.tensor(layer_2).unsqueeze(0).to(device_snac),
|
| 50 |
+
torch.tensor(layer_3).unsqueeze(0).to(device_snac),
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
audio = snac_model.decode(layers).squeeze().cpu().numpy()
|
| 55 |
+
return audio
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# Inference (sin emociones)
|
| 59 |
+
@GPU
|
| 60 |
+
def tts(prompt, speaker):
|
| 61 |
+
# Estructura de prompt: "<SPEAKER>: <texto>"
|
| 62 |
+
full_prompt = f"{speaker}: {prompt}"
|
| 63 |
+
|
| 64 |
+
input_ids = tokenizer(full_prompt, return_tensors="pt").input_ids.to(device)
|
| 65 |
+
|
| 66 |
+
# Tokens especiales (iguales que tu versión anterior)
|
| 67 |
+
start_token = torch.tensor([[128259]], dtype=torch.long).to(device)
|
| 68 |
+
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.long).to(device)
|
| 69 |
+
|
| 70 |
+
input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
| 71 |
+
|
| 72 |
+
# Padding fijo a 4260 para que encaje con el entrenamiento
|
| 73 |
+
padding_len = max(0, 4260 - input_ids.shape[1])
|
| 74 |
+
if padding_len > 0:
|
| 75 |
+
pad = torch.full((1, padding_len), 128263, dtype=torch.long).to(device)
|
| 76 |
+
input_ids = torch.cat([pad, input_ids], dim=1)
|
| 77 |
+
attention_mask = torch.cat([
|
| 78 |
+
torch.zeros((1, padding_len), dtype=torch.long),
|
| 79 |
+
torch.ones((1, input_ids.shape[1]-padding_len), dtype=torch.long)
|
| 80 |
+
], dim=1).to(device)
|
| 81 |
+
else:
|
| 82 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.long).to(device)
|
| 83 |
+
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
generated_ids = model.generate(
|
| 86 |
+
input_ids=input_ids,
|
| 87 |
+
attention_mask=attention_mask,
|
| 88 |
+
max_new_tokens=1200,
|
| 89 |
+
do_sample=True,
|
| 90 |
+
temperature=0.6,
|
| 91 |
+
top_p=0.95,
|
| 92 |
+
repetition_penalty=1.1,
|
| 93 |
+
num_return_sequences=1,
|
| 94 |
+
eos_token_id=128258,
|
| 95 |
+
use_cache=True,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Post-procesado: recortar desde el último token 128257 y limpiar 128258
|
| 99 |
+
token_to_find = 128257
|
| 100 |
+
token_to_remove = 128258
|
| 101 |
+
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
| 102 |
+
if len(token_indices[1]) > 0:
|
| 103 |
+
last_occurrence_idx = token_indices[1][-1].item()
|
| 104 |
+
cropped = generated_ids[:, last_occurrence_idx+1:]
|
| 105 |
+
else:
|
| 106 |
+
cropped = generated_ids
|
| 107 |
+
|
| 108 |
+
cleaned = cropped[cropped != token_to_remove]
|
| 109 |
+
|
| 110 |
+
# Asegurar múltiplos de 7 y ajustar offset SNAC
|
| 111 |
+
trimmed = cleaned[: (len(cleaned) // 7) * 7]
|
| 112 |
+
trimmed = [int(t) - 128266 for t in trimmed]
|
| 113 |
+
|
| 114 |
+
audio = decode_snac(trimmed)
|
| 115 |
+
return (24000, audio)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
# Gradio UI (simple: texto + speaker)
|
| 119 |
+
with gr.Blocks() as demo:
|
| 120 |
+
gr.Markdown("# 🗣️ Orpheus Spanish TTS — sin emociones\nSelecciona un *speaker* y escribe el texto.")
|
| 121 |
+
|
| 122 |
+
with gr.Row():
|
| 123 |
+
with gr.Column():
|
| 124 |
+
text_input = gr.Textbox(label="Texto", placeholder="Escribe aquí el texto a locutar")
|
| 125 |
+
speaker_dropdown = gr.Dropdown(choices=speakers, value=speakers[0], label="Speaker")
|
| 126 |
+
submit_btn = gr.Button("Generar audio")
|
| 127 |
+
with gr.Column():
|
| 128 |
+
audio_output = gr.Audio(label="Audio generado")
|
| 129 |
+
|
| 130 |
+
submit_btn.click(
|
| 131 |
+
fn=tts,
|
| 132 |
+
inputs=[text_input, speaker_dropdown],
|
| 133 |
+
outputs=audio_output,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
if __name__ == "__main__":
|
| 137 |
+
demo.launch()
|