singhvaibhav924 commited on
Commit
88cd6e7
·
1 Parent(s): a8bc431

Deployment Fixes

Browse files
Files changed (6) hide show
  1. .gitignore +2 -0
  2. Dockerfile +11 -0
  3. Model_Handler.py +98 -0
  4. app.py +20 -0
  5. model.h5 +3 -0
  6. requirements.txt +7 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ /__pycache__
2
+ /venv
Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+
7
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ COPY . .
10
+
11
+ CMD ["gunicorn", "-b", "0.0.0.0:7860", "app:app"]
Model_Handler.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import chess
3
+ import tensorflow as tf
4
+ from keras.models import load_model
5
+
6
+ class Model_handler :
7
+ def __init__(self) :
8
+ self.model = load_model("model.h5")
9
+ print("Model loaded and is ready to use !!!")
10
+
11
+ def predict(self, state, color) :
12
+ prediction = self.model(self.convert_state_to_input(state, color))
13
+ return self.convert_output_to_probs(state, color, prediction[1][0])
14
+
15
+ def convert_state_to_input(self, state, color) :
16
+ if type(state) == str :
17
+ temp = state.split("_")
18
+ temp_arr = np.zeros((8,8,12), dtype = np.float16)
19
+ arr2 = np.zeros((8,8,10), dtype = np.float16)
20
+ temp_arr, arr2 = self.convert_board_to_input(temp[-1], color)
21
+ for i in range(1,5) :
22
+ temp_arr = np.concatenate([self.convert_board_to_input(temp[-1-i], color, False), temp_arr], axis = 2)
23
+ return (np.expand_dims(temp_arr, axis = 0), np.expand_dims(arr2, axis = 0))
24
+
25
+ def convert_board_to_input(self, state, color, current = True) :
26
+ if current :
27
+ board = chess.Board(state)
28
+ board.turn = color
29
+ arr = np.zeros((8,8,12), dtype = np.float16)
30
+ arr2 = np.zeros((8,8,10), dtype = np.float16)
31
+ piece_to_value = self.get_piece_to_value(color)
32
+ piece_to_value2 = self.get_piece_to_value(color, False)
33
+ for i in range(64) :
34
+ if(board.piece_at(i) is not None) :
35
+ arr[i//8,i%8,piece_to_value[board.piece_at(i).symbol()]] = 1
36
+ for move in board.legal_moves :
37
+ square = move.to_square
38
+ arr[square//8, square%8, piece_to_value[board.piece_at(move.from_square).symbol()]] = 0.5
39
+ symbol = board.piece_at(move.from_square).symbol()
40
+ if move.promotion is not None :
41
+ arr2[move.promotion-2, move.from_square%8, 9] = 1
42
+ else :
43
+ arr2[square//8, square%8, piece_to_value2[symbol]] = 1
44
+ if(piece_to_value2[symbol] == 1 or piece_to_value2[symbol] == 3 or piece_to_value2[symbol] == 5) :
45
+ piece_to_value2[symbol] += 1
46
+ return (arr, arr2)
47
+ else :
48
+ arr = np.zeros((8,8,12), dtype = np.float16)
49
+ if len(state) == 0 :
50
+ return arr
51
+ board = chess.Board(state)
52
+ board.turn = color
53
+ piece_to_value = self.get_piece_to_value(color)
54
+ for i in range(64) :
55
+ if(board.piece_at(i) is not None) :
56
+ arr[i//8,i%8,piece_to_value[board.piece_at(i).symbol()]] = 1
57
+ return arr
58
+
59
+ def convert_output_to_probs(self, state, color, policy_output) :
60
+ policy = tf.reshape(policy_output, [8,8,10])
61
+ board = chess.Board(state.split("_")[-1])
62
+ board.turn = color
63
+ piece_to_value = self.get_piece_to_value(color,False)
64
+ move_dict = {}
65
+ for move in list(board.legal_moves) :
66
+ to_square = move.to_square
67
+ from_square = move.from_square
68
+ piece_type = piece_to_value[board.piece_at(from_square).symbol()]
69
+ if move.promotion is not None :
70
+ move_dict[move.uci()] = policy[move.promotion-2, from_square%8, 9]
71
+ else :
72
+ move_dict[move.uci()] = policy[to_square//8, to_square%8, piece_type]
73
+ if(piece_type == 1 or piece_type == 3 or piece_type == 5) :
74
+ piece_to_value[board.piece_at(from_square).symbol()] += 1
75
+ # print(list(board.legal_moves))
76
+ move = [item[0] for item in sorted(move_dict.items(), key = lambda x: x[1], reverse = True)][0]
77
+ print(move_dict[move])
78
+ return move
79
+
80
+ def get_piece_to_value(self, color, inp = True) :
81
+ if inp :
82
+ if(color == 1) :
83
+ return {
84
+ 'P': 0, 'N': 1, 'B': 2, 'R': 3, 'Q': 4, 'K': 5,
85
+ 'p': 6, 'n':7, 'b': 8, 'r': 9, 'q': 10, 'k': 11
86
+ }
87
+ return {
88
+ 'p': 0, 'n': 1, 'b': 2, 'r': 3, 'q': 4, 'k': 5,
89
+ 'P': 6, 'N':7, 'B': 8, 'R': 9, 'Q': 10, 'K': 11
90
+ }
91
+ else :
92
+ if(color == 1) :
93
+ return {
94
+ 'P': 0, 'N': 1, 'B': 3, 'R': 5, 'Q': 7, 'K': 8
95
+ }
96
+ return {
97
+ 'p': 0, 'n': 1, 'b': 3, 'r': 5, 'q': 7, 'k': 8
98
+ }
app.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from Model_Handler import Model_handler
2
+ from flask import Flask, request
3
+ from flask_cors import CORS
4
+
5
+
6
+ app = Flask(__name__)
7
+ CORS(app)
8
+ model = Model_handler()
9
+
10
+ @app.route('/')
11
+ def hello_world():
12
+ return 'Hello World'
13
+
14
+ @app.route('/generateMove', methods = ["POST"])
15
+ def generate_move() :
16
+ data = request.get_json()
17
+ return model.predict(data['state'], data['turn'])
18
+
19
+ if __name__ == '__main__':
20
+ app.run()
model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d6b8f63730ca5d909416180bb22134db39575afc2a1b986b7da0c74fd43589d
3
+ size 20462528
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ tensorflow==2.13.0
2
+ numpy
3
+ python-chess
4
+ Flask
5
+ Flask-Cors
6
+ requests
7
+ gunicorn