File size: 7,206 Bytes
a89e95f a31d3a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
title: Corpus Collection Engine
emoji: ๐
colorFrom: purple
colorTo: indigo
sdk: gradio
sdk_version: 5.42.0
app_file: app.py
pinned: false
license: mit
short_description: AI-powered platform for preserving Indian cultural heritage
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
# ๐ฎ๐ณ Corpus Collection Engine
Team Information
- **Team Name**: Heritage Collectors
- **Team Members**:
- Member 1: Singaraju Saiteja (Role: Streamlit app development)
- Member 2: Muthyapu Sudeepthi (Role: AI Integration)
- Member 3: Rithika Sadhu (Role: Documentation)
- Member 4: Golla Bharath Kumar (Role: developement stratergy)
- Member 5: k. Vamshi Kumar (Role: App design and user experience)
**AI-powered platform for preserving Indian cultural heritage through interactive data collection**
## ๐ Setup & Installation
### Prerequisites
- Python 3.8 or higher
- pip package manager
- Git (for cloning the repository)
### Quick Start
1. **Clone the Repository**
```bash
git clone [repository-url]
cd corpus-collection-engine
```
2. **Create Virtual Environment**
```bash
python -m venv venv
# On Windows
venv\Scripts\activate
# On macOS/Linux
source venv/bin/activate
```
3. **Install Dependencies**
```bash
pip install -r requirements.txt
```
4. **Run the Application**
```bash
streamlit run corpus_collection_engine/main.py
```
5. **Access the App**
Open your browser and navigate to localhost:8501
### Alternative Installation Methods
#### Using Docker
```bash
docker build -t corpus-collection-engine .
docker run -p 8501:8501 corpus-collection-engine
```
#### Using the Smart Installer
```bash
python install_dependencies.py
python start_app.py
```
## ๐ What is this?
The Corpus Collection Engine is an innovative Streamlit application designed to collect and preserve diverse data about Indian languages, history, and culture. Through engaging activities, users contribute to building culturally-aware AI systems while helping preserve India's rich heritage.
## ๐ฏ Features
### ๐ญ Interactive Cultural Activities
- **Meme Creator**: Generate culturally relevant memes in Indian languages
- **Recipe Collector**: Share traditional recipes with cultural context
- **Folklore Archive**: Preserve stories, legends, and oral traditions
- **Landmark Identifier**: Document historical and cultural landmarks
### ๐ Multi-language Support
- Hindi, Bengali, Tamil, Telugu, Marathi, Gujarati, Kannada, Malayalam, Punjabi, Odia, Assamese
- Native script support and cultural context preservation
### ๐ Real-time Analytics
- Contribution tracking and cultural impact metrics
- Language diversity and regional distribution analysis
- User engagement and platform growth insights
### ๐ Privacy-First Design
- No authentication required - start contributing immediately
- Minimal data collection with full transparency
- User-controlled privacy settings
## ๐ How to Use
1. **Choose an Activity**: Select from meme creation, recipe sharing, folklore collection, or landmark documentation
2. **Select Your Language**: Pick from 11 supported Indian languages
3. **Contribute Content**: Share your cultural knowledge and creativity
4. **Add Context**: Provide cultural significance and regional information
5. **Submit**: Your contribution helps build culturally-aware AI!
## ๐จ Activities Overview
### ๐ญ Meme Creator
Create humorous content that reflects Indian culture, festivals, traditions, and daily life. Perfect for capturing contemporary cultural expressions.
### ๐ Recipe Collector
Share traditional family recipes, regional specialties, and festival foods. Include cultural significance, occasions, and regional variations.
### ๐ Folklore Archive
Preserve oral traditions, folk tales, legends, and cultural stories. Help maintain the rich narrative heritage of India.
### ๐๏ธ Landmark Identifier
Document historical sites, cultural landmarks, and places of significance. Share stories and cultural importance of locations.
## ๐ ๏ธ Technical Architecture
### Built With
- **Frontend**: Streamlit with custom components
- **Backend**: Python with modular service architecture
- **AI Integration**: Fallback text generation for public deployment
- **Storage**: SQLite for local development, extensible for production
- **Analytics**: Real-time metrics and reporting
- **PWA**: Progressive Web App features for offline access
### Project Structure
```
corpus_collection_engine/
โโโ main.py # Application entry point
โโโ config.py # Configuration settings
โโโ activities/ # Activity implementations
โ โโโ meme_creator.py
โ โโโ recipe_collector.py
โ โโโ folklore_collector.py
โ โโโ landmark_identifier.py
โโโ services/ # Core services
โ โโโ ai_service.py
โ โโโ analytics_service.py
โ โโโ engagement_service.py
โ โโโ privacy_service.py
โโโ models/ # Data models
โโโ utils/ # Utility functions
โโโ pwa/ # Progressive Web App files
```
## ๐งช Testing
Run the test suite:
```bash
python -m pytest tests/
```
Run specific tests:
```bash
python test_app_startup.py
```
## ๐ Deployment
### Hugging Face Spaces
1. Upload files to your Hugging Face Space
2. Use `app.py` as the entry point
3. Ensure `requirements.txt` and `.streamlit/config.toml` are included
### Local Production
```bash
streamlit run corpus_collection_engine/main.py --server.port 8501
```
## ๐ค Contributing
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
## ๐ License
This project is licensed under the MIT License - see the LICENSE file for details.
## ๐ Why Contribute?
- **Preserve Culture**: Help maintain India's diverse cultural heritage for future generations
- **Build Better AI**: Contribute to creating more culturally-aware and inclusive AI systems
- **Share Knowledge**: Connect with others who value cultural preservation
- **Make Impact**: See real-time analytics of your cultural preservation impact
## ๐ Platform Impact
Track the collective impact of cultural preservation efforts:
- Total contributions across all languages
- Geographic distribution of cultural content
- Language diversity metrics
- Cultural significance scoring
## ๐ง Development
### Environment Setup
```bash
# Install development dependencies
pip install -r requirements-dev.txt
# Run linting
flake8 corpus_collection_engine/
# Run type checking
mypy corpus_collection_engine/
```
### Configuration
- Copy `.env.example` to `.env` and configure your settings
- Modify `corpus_collection_engine/config.py` for application settings
## ๐ Support
- **Issues**: Report bugs and request features via GitHub Issues
- **Documentation**: Check our comprehensive guides in the docs folder
- **Community**: Join our discussions via GitHub Discussions
---
**Start preserving Indian culture today! ๐ฎ๐ณโจ**
*Every contribution matters in building a more culturally-aware digital future.*
|