|
import torch |
|
import numpy as np |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
backwarp_tenGrid = {} |
|
|
|
|
|
def warp(tenInput, tenFlow): |
|
with torch.cuda.amp.autocast(enabled=False): |
|
k = (str(tenFlow.device), str(tenFlow.size())) |
|
if k not in backwarp_tenGrid: |
|
tenHorizontal = torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device).view( |
|
1, 1, 1, tenFlow.shape[3]).expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1) |
|
tenVertical = torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device).view( |
|
1, 1, tenFlow.shape[2], 1).expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3]) |
|
backwarp_tenGrid[k] = torch.cat( |
|
[tenHorizontal, tenVertical], 1).to(device) |
|
|
|
tenFlow = torch.cat([tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), |
|
tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0)], 1) |
|
|
|
g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1) |
|
if tenInput.dtype != g.dtype: |
|
g = g.to(tenInput.dtype) |
|
return torch.nn.functional.grid_sample(input=tenInput, grid=g, mode='bilinear', padding_mode='border', align_corners=True) |
|
|
|
|
|
|
|
def warp_features(inp, flow, ): |
|
groups = flow.shape[1]//2 |
|
samples = inp.shape[0] |
|
h = inp.shape[2] |
|
w = inp.shape[3] |
|
assert(flow.shape[0] == samples and flow.shape[2] |
|
== h and flow.shape[3] == w) |
|
chns = inp.shape[1] |
|
chns_per_group = chns // groups |
|
assert(flow.shape[1] % 2 == 0) |
|
assert(chns % groups == 0) |
|
inp = inp.contiguous().view(samples*groups, chns_per_group, h, w) |
|
flow = flow.contiguous().view(samples*groups, 2, h, w) |
|
feat = warp(inp, flow) |
|
feat = feat.view(samples, chns, h, w) |
|
return feat |
|
|
|
|
|
def flow2rgb(flow_map_np): |
|
h, w, _ = flow_map_np.shape |
|
rgb_map = np.ones((h, w, 3)).astype(np.float32)/2.0 |
|
normalized_flow_map = np.concatenate( |
|
(flow_map_np[:, :, 0:1]/h/2.0, flow_map_np[:, :, 1:2]/w/2.0), axis=2) |
|
rgb_map[:, :, 0] += normalized_flow_map[:, :, 0] |
|
rgb_map[:, :, 1] -= 0.5 * \ |
|
(normalized_flow_map[:, :, 0] + normalized_flow_map[:, :, 1]) |
|
rgb_map[:, :, 2] += normalized_flow_map[:, :, 1] |
|
return (rgb_map.clip(0, 1)*255.0).astype(np.uint8) |
|
|