Spaces:
Runtime error
Runtime error
Update: sync with server data (#1)
Browse files- update: sync with server data (e6a9cb0ddb60995723e6a2667303326894f26ef9)
- __pycache__/app.cpython-310.pyc +0 -0
- app.py +39 -43
- example/88.dat +0 -0
- src/__pycache__/functions.cpython-310.pyc +0 -0
- src/__pycache__/semantle.cpython-310.pyc +0 -0
- src/__pycache__/utils.cpython-310.pyc +0 -0
- src/functions.py +2 -2
- src/semantle.py +17 -21
- src/utils.py +19 -0
__pycache__/app.cpython-310.pyc
ADDED
|
Binary file (5.82 kB). View file
|
|
|
app.py
CHANGED
|
@@ -1,57 +1,50 @@
|
|
| 1 |
-
import os
|
| 2 |
import time
|
| 3 |
import json
|
| 4 |
-
import
|
|
|
|
| 5 |
|
| 6 |
import pandas as pd
|
| 7 |
import gradio as gr
|
| 8 |
import openai
|
| 9 |
|
| 10 |
-
from src.semantle import
|
| 11 |
from src.functions import get_functions
|
|
|
|
| 12 |
|
| 13 |
GPT_MODEL = "gpt-3.5-turbo"
|
| 14 |
TITLE = "やりとりSemantle"
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
ユーザーが正解を聞いたりやめると言いたりする場合、やめてもいいかをもう一度確認してください。
|
|
|
|
| 28 |
|
| 29 |
ゲームのルール:
|
| 30 |
-
|
| 31 |
-
正解を出すと成功としてゲームが終わる。推測した言葉がハズレだったら、推測したのが正解とどのぐらい近いかをヒントとしてもらえる。
|
| 32 |
-
|
| 33 |
-
ゲームと関係ない話は答えないでください。
|
| 34 |
"""
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
def add_guess(guess_result):
|
| 39 |
-
if guess_result["rank"] == " 正解!":
|
| 40 |
-
return "正解です。"
|
| 41 |
-
if guess_result["sim"]:
|
| 42 |
-
guesses.loc[guesses.shape[0]] = [guesses.shape[0]] + [v for v in guess_result.values()]
|
| 43 |
-
print(guesses.head())
|
| 44 |
-
return guesses.to_json()
|
| 45 |
-
else:
|
| 46 |
-
return "1,000以内に入っていないようです。"
|
| 47 |
|
| 48 |
def create_chat(user_input, chat_history, api_key):
|
| 49 |
openai.api_key = api_key
|
| 50 |
-
|
| 51 |
-
chat_messages.extend(user_content)
|
| 52 |
response = openai.ChatCompletion.create(
|
| 53 |
model=GPT_MODEL,
|
| 54 |
-
messages=system_message+chat_messages,
|
| 55 |
functions=get_functions()
|
| 56 |
)
|
| 57 |
response_message = response.choices[0].message
|
|
@@ -61,16 +54,17 @@ def create_chat(user_input, chat_history, api_key):
|
|
| 61 |
# Step 3: call the function
|
| 62 |
# Note: the JSON response may not always be valid; be sure to handle errors
|
| 63 |
available_functions = {
|
| 64 |
-
"evaluate_guess":
|
| 65 |
}
|
| 66 |
function_name = response_message["function_call"]["name"]
|
| 67 |
function_to_call = available_functions[function_name]
|
| 68 |
function_args = json.loads(response_message["function_call"]["arguments"])
|
| 69 |
function_response = function_to_call(
|
| 70 |
word=function_args.get("word"),
|
| 71 |
-
|
| 72 |
)
|
| 73 |
-
guess_result = add_guess(function_response)
|
|
|
|
| 74 |
# Step 4: send the info on the function call and function response to GPT
|
| 75 |
chat_messages.append(response_message.to_dict()) # extend conversation with assistant's reply
|
| 76 |
chat_messages.append(
|
|
@@ -80,12 +74,15 @@ def create_chat(user_input, chat_history, api_key):
|
|
| 80 |
) # extend conversation with function response
|
| 81 |
second_response = openai.ChatCompletion.create(
|
| 82 |
model=GPT_MODEL,
|
| 83 |
-
messages=system_message+chat_messages,
|
| 84 |
) # get a new response from GPT where it can se the function response
|
| 85 |
-
|
|
|
|
|
|
|
| 86 |
|
| 87 |
chat_messages.append(response_message.to_dict())
|
| 88 |
-
|
|
|
|
| 89 |
|
| 90 |
with gr.Blocks() as demo:
|
| 91 |
with gr.Row():
|
|
@@ -106,7 +103,7 @@ with gr.Blocks() as demo:
|
|
| 106 |
with gr.Column():
|
| 107 |
api_key = gr.Textbox(placeholder="sk-...", label="OPENAI_API_KEY", value=None, type="password")
|
| 108 |
guesses_table = gr.DataFrame(
|
| 109 |
-
value=guesses,
|
| 110 |
headers=["#", "答え", "スコア", "ランク"],
|
| 111 |
datatype=["number", "str", "str", "str"],
|
| 112 |
elem_id="guesses-table"
|
|
@@ -125,21 +122,20 @@ with gr.Blocks() as demo:
|
|
| 125 |
def greet():
|
| 126 |
return "", [("[START]", "ゲームを始まります!好きな言葉をひとつだけいってみてください。")]
|
| 127 |
|
| 128 |
-
def respond(user_input,
|
| 129 |
reply = create_chat(user_input, chat_history, api_key)
|
| 130 |
-
|
| 131 |
time.sleep(2)
|
| 132 |
-
return "",
|
| 133 |
def update_guesses():
|
| 134 |
-
return guesses_table.update(value=guesses)
|
| 135 |
|
| 136 |
api_key.change(unfreeze, [], [msg]).then(greet, [], [msg, chatbot])
|
| 137 |
msg.submit(respond, [msg, chatbot, api_key], [msg, chatbot]).then(update_guesses, [], [guesses_table])
|
| 138 |
|
| 139 |
-
|
| 140 |
gr.Examples(
|
| 141 |
[
|
| 142 |
-
[
|
| 143 |
["どんなヒントが貰える?"],
|
| 144 |
["正解と「近い」とはどういう意味?"],
|
| 145 |
["何から始めたらいい?"],
|
|
|
|
|
|
|
| 1 |
import time
|
| 2 |
import json
|
| 3 |
+
from datetime import date, datetime
|
| 4 |
+
from pytz import utc, timezone
|
| 5 |
|
| 6 |
import pandas as pd
|
| 7 |
import gradio as gr
|
| 8 |
import openai
|
| 9 |
|
| 10 |
+
from src.semantle import get_guess, get_secret
|
| 11 |
from src.functions import get_functions
|
| 12 |
+
from src.utils import add_guess
|
| 13 |
|
| 14 |
GPT_MODEL = "gpt-3.5-turbo"
|
| 15 |
TITLE = "やりとりSemantle"
|
| 16 |
+
FIRST_DAY = date(2023, 4, 2)
|
| 17 |
+
puzzle_num = (utc.localize(datetime.utcnow()).astimezone(timezone('Asia/Tokyo')).date() - FIRST_DAY).days
|
| 18 |
+
secret = get_secret(puzzle_num)
|
| 19 |
|
| 20 |
+
class play:
|
| 21 |
+
guessed = set()
|
| 22 |
+
guesses = pd.DataFrame(columns=["#", "答え", "スコア", "ランク"])
|
| 23 |
|
| 24 |
+
task_background = f"""今から言葉をします。ユーザがゲームすることを手伝ってください。
|
| 25 |
|
| 26 |
+
"""
|
| 27 |
+
task_description=f"""まず、ユーザーからの話を聞いて、答えるのか、ヒントを欲しがっているのか、やめようといるのかを判断してください。
|
| 28 |
+
ユーザーが答えする場合、答えの点数を評価してください。そのあと結果を一言に要約してください。
|
| 29 |
+
ユーザーがヒントを欲しがっている場合、正解に関する間接的な情報を提供してください。
|
| 30 |
ユーザーが正解を聞いたりやめると言いたりする場合、やめてもいいかをもう一度確認してください。
|
| 31 |
+
そのほか話は答えないでください。
|
| 32 |
|
| 33 |
ゲームのルール:
|
| 34 |
+
正解は一つの言葉である。ユーザーはどんな言葉が正解か推測して、単語を一つずつ答えする。答えた単語のスコアが100点で、正解と一致すると成功としてゲームが終わる。
|
|
|
|
|
|
|
|
|
|
| 35 |
"""
|
| 36 |
+
system_content = task_background+task_description
|
| 37 |
+
system_message = [{"role": "system", "content": system_content}]
|
| 38 |
+
chat_history = []
|
| 39 |
+
n_history = 8
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
def create_chat(user_input, chat_history, api_key):
|
| 43 |
openai.api_key = api_key
|
| 44 |
+
chat_messages = [{"role": "user", "content": user_input}]
|
|
|
|
| 45 |
response = openai.ChatCompletion.create(
|
| 46 |
model=GPT_MODEL,
|
| 47 |
+
messages=system_message+chat_history+chat_messages,
|
| 48 |
functions=get_functions()
|
| 49 |
)
|
| 50 |
response_message = response.choices[0].message
|
|
|
|
| 54 |
# Step 3: call the function
|
| 55 |
# Note: the JSON response may not always be valid; be sure to handle errors
|
| 56 |
available_functions = {
|
| 57 |
+
"evaluate_guess": get_guess,
|
| 58 |
}
|
| 59 |
function_name = response_message["function_call"]["name"]
|
| 60 |
function_to_call = available_functions[function_name]
|
| 61 |
function_args = json.loads(response_message["function_call"]["arguments"])
|
| 62 |
function_response = function_to_call(
|
| 63 |
word=function_args.get("word"),
|
| 64 |
+
puzzle_num=puzzle_num
|
| 65 |
)
|
| 66 |
+
guess_result = add_guess(function_response, play)
|
| 67 |
+
print(guess_result)
|
| 68 |
# Step 4: send the info on the function call and function response to GPT
|
| 69 |
chat_messages.append(response_message.to_dict()) # extend conversation with assistant's reply
|
| 70 |
chat_messages.append(
|
|
|
|
| 74 |
) # extend conversation with function response
|
| 75 |
second_response = openai.ChatCompletion.create(
|
| 76 |
model=GPT_MODEL,
|
| 77 |
+
messages=system_message+chat_history+chat_messages,
|
| 78 |
) # get a new response from GPT where it can se the function response
|
| 79 |
+
chat_messages.append(second_response["choices"][0]["message"].to_dict())
|
| 80 |
+
chat_history = chat_history[-8:] + chat_messages
|
| 81 |
+
return chat_messages[-1]
|
| 82 |
|
| 83 |
chat_messages.append(response_message.to_dict())
|
| 84 |
+
chat_history = chat_history[-8:] + chat_messages
|
| 85 |
+
return chat_messages[-1]
|
| 86 |
|
| 87 |
with gr.Blocks() as demo:
|
| 88 |
with gr.Row():
|
|
|
|
| 103 |
with gr.Column():
|
| 104 |
api_key = gr.Textbox(placeholder="sk-...", label="OPENAI_API_KEY", value=None, type="password")
|
| 105 |
guesses_table = gr.DataFrame(
|
| 106 |
+
value=play.guesses,
|
| 107 |
headers=["#", "答え", "スコア", "ランク"],
|
| 108 |
datatype=["number", "str", "str", "str"],
|
| 109 |
elem_id="guesses-table"
|
|
|
|
| 122 |
def greet():
|
| 123 |
return "", [("[START]", "ゲームを始まります!好きな言葉をひとつだけいってみてください。")]
|
| 124 |
|
| 125 |
+
def respond(user_input, chatbot, api_key):
|
| 126 |
reply = create_chat(user_input, chat_history, api_key)
|
| 127 |
+
chatbot.append((user_input, reply["content"]))
|
| 128 |
time.sleep(2)
|
| 129 |
+
return "", chatbot
|
| 130 |
def update_guesses():
|
| 131 |
+
return guesses_table.update(value=play.guesses.sort_values(by="スコア", ascending=False),)
|
| 132 |
|
| 133 |
api_key.change(unfreeze, [], [msg]).then(greet, [], [msg, chatbot])
|
| 134 |
msg.submit(respond, [msg, chatbot, api_key], [msg, chatbot]).then(update_guesses, [], [guesses_table])
|
| 135 |
|
|
|
|
| 136 |
gr.Examples(
|
| 137 |
[
|
| 138 |
+
["猫"],
|
| 139 |
["どんなヒントが貰える?"],
|
| 140 |
["正解と「近い」とはどういう意味?"],
|
| 141 |
["何から始めたらいい?"],
|
example/88.dat
DELETED
|
Binary file (75.2 kB)
|
|
|
src/__pycache__/functions.cpython-310.pyc
ADDED
|
Binary file (764 Bytes). View file
|
|
|
src/__pycache__/semantle.cpython-310.pyc
ADDED
|
Binary file (801 Bytes). View file
|
|
|
src/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (998 Bytes). View file
|
|
|
src/functions.py
CHANGED
|
@@ -5,11 +5,11 @@ evaluate_guess = {"name": "evaluate_guess",
|
|
| 5 |
"properties": {
|
| 6 |
"word": {
|
| 7 |
"type": "string",
|
| 8 |
-
"description": "A word, noun, verb, adverb or adjective. e.g. 空, 近い, 行く, etc."
|
| 9 |
},
|
| 10 |
"puzzle": {
|
| 11 |
"type": "object",
|
| 12 |
-
"description": "A puzzle
|
| 13 |
}
|
| 14 |
},
|
| 15 |
"required": ["word", "puzzle"]
|
|
|
|
| 5 |
"properties": {
|
| 6 |
"word": {
|
| 7 |
"type": "string",
|
| 8 |
+
"description": "A single Japanese word, which is can be a noun, verb, adverb or adjective. e.g. 空, 近い, 行く, etc."
|
| 9 |
},
|
| 10 |
"puzzle": {
|
| 11 |
"type": "object",
|
| 12 |
+
"description": "A class containing information about the puzzle; a secret word and scores/ranks for other words."
|
| 13 |
}
|
| 14 |
},
|
| 15 |
"required": ["word", "puzzle"]
|
src/semantle.py
CHANGED
|
@@ -1,23 +1,19 @@
|
|
| 1 |
-
import
|
| 2 |
-
from typing import Tuple, List, Dict
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
def
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
rtn = {"guess": word, "sim": None, "rank": None}
|
| 19 |
-
# check most similar
|
| 20 |
-
if word in puzzle.nearests:
|
| 21 |
-
rtn["sim"] = puzzle.nearests[word][1]
|
| 22 |
-
rtn["rank"] = puzzle.nearests[word][0]
|
| 23 |
-
return rtn
|
|
|
|
| 1 |
+
import requests
|
|
|
|
| 2 |
|
| 3 |
+
def get_secret(puzzle_num: int):
|
| 4 |
+
request_url = f"https://semantoru.com/yesterday/{puzzle_num+1}"
|
| 5 |
+
response = requests.get(request_url)
|
| 6 |
+
if response.status_code == 200:
|
| 7 |
+
return response.content
|
| 8 |
+
else:
|
| 9 |
+
print("Not found error.")
|
| 10 |
|
| 11 |
+
def get_guess(word: str, puzzle_num: int):
|
| 12 |
+
request_url = f"https://semantoru.com/guess/{puzzle_num}/{word}"
|
| 13 |
+
response = requests.get(request_url)
|
| 14 |
+
print(response.status_code)
|
| 15 |
+
if response.status_code == 200:
|
| 16 |
+
output = response.json()
|
| 17 |
+
return output["guess"], output["sim"], output["rank"]
|
| 18 |
+
else:
|
| 19 |
+
return word, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/utils.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def add_guess(guess_result, play):
|
| 2 |
+
word, sim, rank = guess_result
|
| 3 |
+
if sim:
|
| 4 |
+
if word not in play.guessed:
|
| 5 |
+
sim = round(sim, 2)
|
| 6 |
+
rank = "情報なし" if rank == 1001 else rank
|
| 7 |
+
play.guesses.loc[len(play.guessed)] = ([len(play.guessed), word, sim, rank])
|
| 8 |
+
play.guessed.add(word)
|
| 9 |
+
cur_result = format_result(word, sim, rank)
|
| 10 |
+
else:
|
| 11 |
+
cur_result = "不正解: 正しくない単語"
|
| 12 |
+
return "\n".join([cur_result, "最高スコア:", format_table(play.guesses)])
|
| 13 |
+
|
| 14 |
+
def format_result(word, sim, rank):
|
| 15 |
+
return f"{word}: スコア {sim}, ランク {rank}"
|
| 16 |
+
|
| 17 |
+
def format_table(table, n_rows=10):
|
| 18 |
+
top_results = table.sort_values(by="スコア", ascending=False).head(n_rows)
|
| 19 |
+
return top_results.to_markdown(index=False)
|