import json
import os
import zipfile
from io import BytesIO
from tempfile import NamedTemporaryFile
import tempfile

import gradio as gr
import pandas as pd
from PIL import Image
import safetensors.torch
import spaces
import timm
from timm.models import VisionTransformer
import torch
from torchvision.transforms import transforms
from torchvision.transforms import InterpolationMode
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset, DataLoader
from math import ceil
from typing import Callable
from functools import partial
import spaces.config
from spaces.zero.decorator import P, R

torch.set_grad_enabled(False)

def _dynGPU(
    fn: Callable[P, R] | None, duration: Callable[P, int], min=10, max=300, step=5
) -> Callable[P, R]:
    if not spaces.config.Config.zero_gpu:
        return fn

    funcs = [
        (t, spaces.GPU(duration=t)(lambda *args, **kwargs: fn(*args, **kwargs)))
        for t in range(min, max + 1, step)
    ]

    def wrapper(*args, **kwargs):
        requirement = duration(*args, **kwargs)

        # find the function that satisfies the duration requirement
        for t, func in funcs:
            if t >= requirement:
                gr.Info(f"Acquiring ZeroGPU for {t} seconds")
                return func(*args, **kwargs)

        # if no function is found, return the last one
        gr.Info(f"Acquiring ZeroGPU for {funcs[-1][0]} seconds")
        return funcs[-1][1](*args, **kwargs)

    return wrapper


def dynGPU(
    fn: Callable[P, R] | None = None,
    duration: Callable[P, int] = lambda: 60,
    min=10,
    max=300,
    step=5,
) -> Callable[P, R]:
    if fn is None:
        return partial(_dynGPU, duration=duration, min=min, max=max, step=step)
    return _dynGPU(fn, duration, min, max, step)
    

class Fit(torch.nn.Module):
    def __init__(
        self,
        bounds: tuple[int, int] | int,
        interpolation = InterpolationMode.LANCZOS,
        grow: bool = True,
        pad: float | None = None
    ):
        super().__init__()

        self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds
        self.interpolation = interpolation
        self.grow = grow
        self.pad = pad

    def forward(self, img: Image) -> Image:
        wimg, himg = img.size
        hbound, wbound = self.bounds

        hscale = hbound / himg
        wscale = wbound / wimg

        if not self.grow:
            hscale = min(hscale, 1.0)
            wscale = min(wscale, 1.0)

        scale = min(hscale, wscale)
        if scale == 1.0:
            return img

        hnew = min(round(himg * scale), hbound)
        wnew = min(round(wimg * scale), wbound)

        img = TF.resize(img, (hnew, wnew), self.interpolation)

        if self.pad is None:
            return img

        hpad = hbound - hnew
        wpad = wbound - wnew

        tpad = hpad // 2
        bpad = hpad - tpad

        lpad = wpad // 2
        rpad = wpad - lpad

        return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad)

    def __repr__(self) -> str:
        return (
            f"{self.__class__.__name__}(" +
            f"bounds={self.bounds}, " +
            f"interpolation={self.interpolation.value}, " +
            f"grow={self.grow}, " +
            f"pad={self.pad})"
        )

class CompositeAlpha(torch.nn.Module):
    def __init__(
        self,
        background: tuple[float, float, float] | float,
    ):
        super().__init__()

        self.background = (background, background, background) if isinstance(background, float) else background
        self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2)

    def forward(self, img: torch.Tensor) -> torch.Tensor:
        if img.shape[-3] == 3:
            return img

        alpha = img[..., 3, None, :, :]

        img[..., :3, :, :] *= alpha

        background = self.background.expand(-1, img.shape[-2], img.shape[-1])
        if background.ndim == 1:
            background = background[:, None, None]
        elif background.ndim == 2:
            background = background[None, :, :]

        img[..., :3, :, :] += (1.0 - alpha) * background
        return img[..., :3, :, :]

    def __repr__(self) -> str:
        return (
            f"{self.__class__.__name__}(" +
            f"background={self.background})"
        )

transform = transforms.Compose([
    Fit((384, 384)),
    transforms.ToTensor(),
    CompositeAlpha(0.5),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
    transforms.CenterCrop((384, 384)),
])

model = timm.create_model(
    "vit_so400m_patch14_siglip_384.webli",
    pretrained=False,
    num_classes=9083,
) # type: VisionTransformer

class GatedHead(torch.nn.Module):
    def __init__(self,
        num_features: int,
        num_classes: int
    ):
        super().__init__()
        self.num_classes = num_classes
        self.linear = torch.nn.Linear(num_features, num_classes * 2)

        self.act = torch.nn.Sigmoid()
        self.gate = torch.nn.Sigmoid()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.linear(x)
        x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:])
        return x

model.head = GatedHead(min(model.head.weight.shape), 9083)

safetensors.torch.load_model(model, "JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()

with open("tagger_tags.json", "r") as file:
    tags = json.load(file) # type: dict
allowed_tags = list(tags.keys())

for idx, tag in enumerate(allowed_tags):
    allowed_tags[idx] = tag.replace("_", " ")

sorted_tag_score = {}

@spaces.GPU(duration=6)
def run_classifier(image, threshold):
    global sorted_tag_score
    img = image.convert('RGBA')
    tensor = transform(img).unsqueeze(0).to(device)

    with torch.no_grad():
        probits = model(tensor)[0]
        values, indices = probits.topk(250)

    tag_score = dict()
    for i in range(indices.size(0)):
        tag_score[allowed_tags[indices[i]]] = values[i].item()
    sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True))

    return create_tags(threshold)

def create_tags(threshold):
    global sorted_tag_score
    filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold}
    text_no_impl = ", ".join(filtered_tag_score.keys())
    return text_no_impl, filtered_tag_score

def clear_image():
    global sorted_tag_score
    sorted_tag_score = {}
    return "", {}

class ImageDataset(Dataset):
    def __init__(self, image_files, transform):
        self.image_files = image_files
        self.transform = transform
    
    def __len__(self):
        return len(self.image_files)
    
    def __getitem__(self, idx):
        img_path = self.image_files[idx]
        img = Image.open(img_path).convert('RGB')
        return self.transform(img), os.path.basename(img_path)
    
def measure_duration(images, threshold) -> int:
    return ceil(len(images) / 64) * 5 + 3

@dynGPU(duration=measure_duration)
def process_images(images, threshold):
    dataset = ImageDataset(images, transform)

    dataloader = DataLoader(dataset, batch_size=64, num_workers=0, pin_memory=True, drop_last=False)
    
    all_results = []

    with torch.no_grad():
        for batch, filenames in dataloader:
            batch = batch.to(device) 
            probabilities = model(batch)
            for i, prob in enumerate(probabilities):
                indices = torch.where(prob > threshold)[0]
                values = prob[indices]
                
                temp = []
                tag_score = dict()
                for j in range(indices.size(0)):
                    tag = allowed_tags[indices[j]]
                    score = values[j].item()
                    temp.append([tag, score])
                    tag_score[tag] = score
                
                tags = ", ".join([t[0] for t in temp])
                all_results.append((filenames[i], tags, tag_score))

    return all_results

def is_valid_image(file_path):
    try:
        with Image.open(file_path) as img:
            img.verify()
        return True
    except:
        return False

def process_zip(zip_file, threshold):
    if zip_file is None:
        return None, None

    with tempfile.TemporaryDirectory() as temp_dir:
        with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
            zip_ref.extractall(temp_dir)
        
        all_files = [os.path.join(temp_dir, f) for f in os.listdir(temp_dir)]
        image_files = [f for f in all_files if is_valid_image(f)]
        results = process_images(image_files, threshold)
    
        temp_file = NamedTemporaryFile(delete=False, suffix=".zip")
        with zipfile.ZipFile(temp_file, "w") as zip_ref:
            for image_name, text_no_impl, _ in results:
                with zip_ref.open(''.join(image_name.split('.')[:-1]) + ".txt", 'w') as file:
                    file.write(text_no_impl.encode())
        temp_file.seek(0)
        df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags'])

    return temp_file.name, df

with gr.Blocks(css=".output-class { display: none; }") as demo:
    gr.Markdown("""
    ## Joint Tagger Project: JTP-PILOT² Demo **BETA**
    This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results).  A threshold of 0.2 is recommended.  Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags.

    This tagger is the result of joint efforts between members of the RedRocket team, with distinctions given to Thessalo for creating the foundation for this project with his efforts, RedHotTensors for redesigning the process into a second-order method that models information expectation, and drhead for dataset prep, creation of training code and supervision of training runs.

    Special thanks to Minotoro at frosting.ai for providing the compute power for this project.
    """)
    with gr.Tabs():
        with gr.TabItem("Single Image"):
            with gr.Row():
                with gr.Column():
                    image_input = gr.Image(label="Source", sources=['upload'], type='pil', height=512, show_label=False)
                    threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold")
                with gr.Column():
                    tag_string = gr.Textbox(label="Tag String")
                    label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False)

            image_input.upload(
                fn=run_classifier,
                inputs=[image_input, threshold_slider],
                outputs=[tag_string, label_box]
            )

            threshold_slider.input(
                fn=create_tags,
                inputs=[threshold_slider],
                outputs=[tag_string, label_box]
            )
        
        with gr.TabItem("Multiple Images"):
            with gr.Row():
                with gr.Column():
                    zip_input = gr.File(label="Upload ZIP file", file_types=['.zip'])
                    multi_threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold")
                    process_button = gr.Button("Process Images")
                with gr.Column():
                    zip_output = gr.File(label="Download Tagged Text Files (ZIP)")
                    dataframe_output = gr.Dataframe(label="Image Tags Summary")
            
            process_button.click(
                fn=process_zip,
                inputs=[zip_input, multi_threshold_slider],
                outputs=[zip_output, dataframe_output]
            )

if __name__ == "__main__":
    demo.launch()