Spaces:
Runtime error
Runtime error
Sigrid De los Santos
commited on
Commit
Β·
a9b1809
1
Parent(s):
3e4bf85
Remove remaining binary file for Hugging Face
Browse files- src/main.py +62 -50
src/main.py
CHANGED
|
@@ -3,14 +3,16 @@ import sys
|
|
| 3 |
from datetime import datetime
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
from image_search import search_unsplash_image
|
| 8 |
from md_html import convert_single_md_to_html as convert_md_to_html
|
| 9 |
from news_analysis import fetch_deep_news, generate_value_investor_report
|
| 10 |
from csv_utils import detect_changes
|
| 11 |
|
| 12 |
-
# Setup
|
| 13 |
-
BASE_DIR = os.path.dirname(os.path.dirname(__file__))
|
| 14 |
DATA_DIR = os.path.join(BASE_DIR, "data")
|
| 15 |
HTML_DIR = os.path.join(BASE_DIR, "html")
|
| 16 |
CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv")
|
|
@@ -18,7 +20,7 @@ CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv")
|
|
| 18 |
os.makedirs(DATA_DIR, exist_ok=True)
|
| 19 |
os.makedirs(HTML_DIR, exist_ok=True)
|
| 20 |
|
| 21 |
-
# Load .env
|
| 22 |
load_dotenv()
|
| 23 |
|
| 24 |
def build_metrics_box(topic, num_articles):
|
|
@@ -30,16 +32,33 @@ def build_metrics_box(topic, num_articles):
|
|
| 30 |
>
|
| 31 |
"""
|
| 32 |
|
| 33 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
current_df = pd.read_csv(csv_path)
|
| 35 |
prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
|
| 36 |
-
|
| 37 |
if os.path.exists(prev_path):
|
| 38 |
previous_df = pd.read_csv(prev_path)
|
| 39 |
changed_df = detect_changes(current_df, previous_df)
|
| 40 |
if changed_df.empty:
|
| 41 |
-
|
| 42 |
-
progress_callback("β
No changes detected. Skipping processing.")
|
| 43 |
return []
|
| 44 |
else:
|
| 45 |
changed_df = current_df
|
|
@@ -49,27 +68,18 @@ def run_value_investing_analysis(csv_path, progress_callback=None):
|
|
| 49 |
for _, row in changed_df.iterrows():
|
| 50 |
topic = row.get("topic")
|
| 51 |
timespan = row.get("timespan_days", 7)
|
| 52 |
-
|
| 53 |
-
if progress_callback:
|
| 54 |
-
progress_callback(f"π Processing: {topic} ({timespan} days)")
|
| 55 |
|
| 56 |
news = fetch_deep_news(topic, timespan)
|
| 57 |
if not news:
|
| 58 |
-
|
| 59 |
-
progress_callback(f"β οΈ No news found for: {topic}")
|
| 60 |
continue
|
| 61 |
|
| 62 |
-
if progress_callback:
|
| 63 |
-
progress_callback(f"π§ Analyzing news for: {topic}")
|
| 64 |
-
|
| 65 |
report_body = generate_value_investor_report(topic, news)
|
| 66 |
-
|
| 67 |
-
# Use placeholder image instead of API call
|
| 68 |
-
image_url = "https://via.placeholder.com/1281x721?text=No+Image"
|
| 69 |
-
image_credit = "Image unavailable"
|
| 70 |
|
| 71 |
metrics_md = build_metrics_box(topic, len(news))
|
| 72 |
-
full_md = metrics_md + report_body
|
| 73 |
|
| 74 |
base_filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}"
|
| 75 |
filename = base_filename + ".md"
|
|
@@ -81,30 +91,22 @@ def run_value_investing_analysis(csv_path, progress_callback=None):
|
|
| 81 |
filepath = os.path.join(DATA_DIR, filename)
|
| 82 |
counter += 1
|
| 83 |
|
| 84 |
-
if progress_callback:
|
| 85 |
-
progress_callback(f"π Saving markdown for: {topic}")
|
| 86 |
-
|
| 87 |
with open(filepath, "w", encoding="utf-8") as f:
|
| 88 |
f.write(full_md)
|
| 89 |
|
| 90 |
new_md_files.append(filepath)
|
| 91 |
|
| 92 |
-
|
| 93 |
-
progress_callback(f"β
Markdown reports saved to: `{DATA_DIR}`")
|
| 94 |
-
|
| 95 |
current_df.to_csv(prev_path, index=False)
|
| 96 |
return new_md_files
|
| 97 |
|
| 98 |
-
def run_pipeline(csv_path, tavily_api_key
|
| 99 |
os.environ["TAVILY_API_KEY"] = tavily_api_key
|
| 100 |
|
| 101 |
-
new_md_files = run_value_investing_analysis(csv_path
|
| 102 |
new_html_paths = []
|
| 103 |
|
| 104 |
for md_path in new_md_files:
|
| 105 |
-
if progress_callback:
|
| 106 |
-
progress_callback(f"π Converting to HTML: {os.path.basename(md_path)}")
|
| 107 |
-
|
| 108 |
convert_md_to_html(md_path, HTML_DIR)
|
| 109 |
html_path = os.path.join(HTML_DIR, os.path.basename(md_path).replace(".md", ".html"))
|
| 110 |
new_html_paths.append(html_path)
|
|
@@ -117,19 +119,18 @@ if __name__ == "__main__":
|
|
| 117 |
convert_md_to_html(md, HTML_DIR)
|
| 118 |
print(f"π All reports converted to HTML at: {HTML_DIR}")
|
| 119 |
|
|
|
|
| 120 |
# import os
|
| 121 |
# import sys
|
| 122 |
# from datetime import datetime
|
| 123 |
# from dotenv import load_dotenv
|
|
|
|
| 124 |
|
| 125 |
# from image_search import search_unsplash_image
|
| 126 |
# from md_html import convert_single_md_to_html as convert_md_to_html
|
| 127 |
# from news_analysis import fetch_deep_news, generate_value_investor_report
|
| 128 |
-
|
| 129 |
-
# import pandas as pd
|
| 130 |
# from csv_utils import detect_changes
|
| 131 |
|
| 132 |
-
|
| 133 |
# # Setup paths
|
| 134 |
# BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # one level up from src/
|
| 135 |
# DATA_DIR = os.path.join(BASE_DIR, "data")
|
|
@@ -151,14 +152,16 @@ if __name__ == "__main__":
|
|
| 151 |
# >
|
| 152 |
# """
|
| 153 |
|
| 154 |
-
# def run_value_investing_analysis(csv_path):
|
| 155 |
# current_df = pd.read_csv(csv_path)
|
| 156 |
# prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
|
|
|
|
| 157 |
# if os.path.exists(prev_path):
|
| 158 |
# previous_df = pd.read_csv(prev_path)
|
| 159 |
# changed_df = detect_changes(current_df, previous_df)
|
| 160 |
# if changed_df.empty:
|
| 161 |
-
#
|
|
|
|
| 162 |
# return []
|
| 163 |
# else:
|
| 164 |
# changed_df = current_df
|
|
@@ -168,20 +171,24 @@ if __name__ == "__main__":
|
|
| 168 |
# for _, row in changed_df.iterrows():
|
| 169 |
# topic = row.get("topic")
|
| 170 |
# timespan = row.get("timespan_days", 7)
|
| 171 |
-
|
|
|
|
|
|
|
| 172 |
|
| 173 |
# news = fetch_deep_news(topic, timespan)
|
| 174 |
# if not news:
|
| 175 |
-
#
|
|
|
|
| 176 |
# continue
|
| 177 |
|
| 178 |
-
#
|
| 179 |
-
#
|
| 180 |
|
| 181 |
-
#
|
| 182 |
-
# image_url, image_credit = search_unsplash_image(topic)
|
| 183 |
|
| 184 |
-
# #
|
|
|
|
|
|
|
| 185 |
|
| 186 |
# metrics_md = build_metrics_box(topic, len(news))
|
| 187 |
# full_md = metrics_md + report_body
|
|
@@ -196,34 +203,39 @@ if __name__ == "__main__":
|
|
| 196 |
# filepath = os.path.join(DATA_DIR, filename)
|
| 197 |
# counter += 1
|
| 198 |
|
|
|
|
|
|
|
|
|
|
| 199 |
# with open(filepath, "w", encoding="utf-8") as f:
|
| 200 |
# f.write(full_md)
|
| 201 |
|
| 202 |
# new_md_files.append(filepath)
|
| 203 |
|
| 204 |
-
#
|
|
|
|
|
|
|
| 205 |
# current_df.to_csv(prev_path, index=False)
|
| 206 |
# return new_md_files
|
| 207 |
|
| 208 |
-
|
| 209 |
-
# def run_pipeline(csv_path, tavily_api_key):
|
| 210 |
# os.environ["TAVILY_API_KEY"] = tavily_api_key
|
| 211 |
|
| 212 |
-
# new_md_files = run_value_investing_analysis(csv_path)
|
| 213 |
# new_html_paths = []
|
| 214 |
|
| 215 |
# for md_path in new_md_files:
|
|
|
|
|
|
|
|
|
|
| 216 |
# convert_md_to_html(md_path, HTML_DIR)
|
| 217 |
# html_path = os.path.join(HTML_DIR, os.path.basename(md_path).replace(".md", ".html"))
|
| 218 |
# new_html_paths.append(html_path)
|
| 219 |
|
| 220 |
# return new_html_paths
|
| 221 |
|
| 222 |
-
|
| 223 |
# if __name__ == "__main__":
|
| 224 |
# md_files = run_value_investing_analysis(CSV_PATH)
|
| 225 |
# for md in md_files:
|
| 226 |
# convert_md_to_html(md, HTML_DIR)
|
| 227 |
# print(f"π All reports converted to HTML at: {HTML_DIR}")
|
| 228 |
|
| 229 |
-
|
|
|
|
| 3 |
from datetime import datetime
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
import pandas as pd
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
import base64
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
|
|
|
|
| 10 |
from md_html import convert_single_md_to_html as convert_md_to_html
|
| 11 |
from news_analysis import fetch_deep_news, generate_value_investor_report
|
| 12 |
from csv_utils import detect_changes
|
| 13 |
|
| 14 |
+
# === Setup Paths ===
|
| 15 |
+
BASE_DIR = os.path.dirname(os.path.dirname(__file__))
|
| 16 |
DATA_DIR = os.path.join(BASE_DIR, "data")
|
| 17 |
HTML_DIR = os.path.join(BASE_DIR, "html")
|
| 18 |
CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv")
|
|
|
|
| 20 |
os.makedirs(DATA_DIR, exist_ok=True)
|
| 21 |
os.makedirs(HTML_DIR, exist_ok=True)
|
| 22 |
|
| 23 |
+
# === Load .env ===
|
| 24 |
load_dotenv()
|
| 25 |
|
| 26 |
def build_metrics_box(topic, num_articles):
|
|
|
|
| 32 |
>
|
| 33 |
"""
|
| 34 |
|
| 35 |
+
def create_sentiment_chart_md(topic):
|
| 36 |
+
# Placeholder dummy chart
|
| 37 |
+
dates = pd.date_range(end=datetime.today(), periods=7)
|
| 38 |
+
values = [100 + i * 3 for i in range(7)]
|
| 39 |
+
|
| 40 |
+
plt.figure(figsize=(6, 3))
|
| 41 |
+
plt.plot(dates, values, marker='o')
|
| 42 |
+
plt.title(f"π Sentiment Trend: {topic}")
|
| 43 |
+
plt.xlabel("Date")
|
| 44 |
+
plt.ylabel("Sentiment")
|
| 45 |
+
plt.grid(True)
|
| 46 |
+
|
| 47 |
+
buffer = BytesIO()
|
| 48 |
+
plt.savefig(buffer, format='png')
|
| 49 |
+
plt.close()
|
| 50 |
+
buffer.seek(0)
|
| 51 |
+
encoded = base64.b64encode(buffer.read()).decode("utf-8")
|
| 52 |
+
return f""
|
| 53 |
+
|
| 54 |
+
def run_value_investing_analysis(csv_path):
|
| 55 |
current_df = pd.read_csv(csv_path)
|
| 56 |
prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
|
|
|
|
| 57 |
if os.path.exists(prev_path):
|
| 58 |
previous_df = pd.read_csv(prev_path)
|
| 59 |
changed_df = detect_changes(current_df, previous_df)
|
| 60 |
if changed_df.empty:
|
| 61 |
+
print("β
No changes detected. Skipping processing.")
|
|
|
|
| 62 |
return []
|
| 63 |
else:
|
| 64 |
changed_df = current_df
|
|
|
|
| 68 |
for _, row in changed_df.iterrows():
|
| 69 |
topic = row.get("topic")
|
| 70 |
timespan = row.get("timespan_days", 7)
|
| 71 |
+
print(f"\nπ Processing: {topic} ({timespan} days)")
|
|
|
|
|
|
|
| 72 |
|
| 73 |
news = fetch_deep_news(topic, timespan)
|
| 74 |
if not news:
|
| 75 |
+
print(f"β οΈ No news found for: {topic}")
|
|
|
|
| 76 |
continue
|
| 77 |
|
|
|
|
|
|
|
|
|
|
| 78 |
report_body = generate_value_investor_report(topic, news)
|
| 79 |
+
chart_md = create_sentiment_chart_md(topic)
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
metrics_md = build_metrics_box(topic, len(news))
|
| 82 |
+
full_md = metrics_md + report_body + "\n\n" + chart_md
|
| 83 |
|
| 84 |
base_filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}"
|
| 85 |
filename = base_filename + ".md"
|
|
|
|
| 91 |
filepath = os.path.join(DATA_DIR, filename)
|
| 92 |
counter += 1
|
| 93 |
|
|
|
|
|
|
|
|
|
|
| 94 |
with open(filepath, "w", encoding="utf-8") as f:
|
| 95 |
f.write(full_md)
|
| 96 |
|
| 97 |
new_md_files.append(filepath)
|
| 98 |
|
| 99 |
+
print(f"β
Markdown saved to: {DATA_DIR}")
|
|
|
|
|
|
|
| 100 |
current_df.to_csv(prev_path, index=False)
|
| 101 |
return new_md_files
|
| 102 |
|
| 103 |
+
def run_pipeline(csv_path, tavily_api_key):
|
| 104 |
os.environ["TAVILY_API_KEY"] = tavily_api_key
|
| 105 |
|
| 106 |
+
new_md_files = run_value_investing_analysis(csv_path)
|
| 107 |
new_html_paths = []
|
| 108 |
|
| 109 |
for md_path in new_md_files:
|
|
|
|
|
|
|
|
|
|
| 110 |
convert_md_to_html(md_path, HTML_DIR)
|
| 111 |
html_path = os.path.join(HTML_DIR, os.path.basename(md_path).replace(".md", ".html"))
|
| 112 |
new_html_paths.append(html_path)
|
|
|
|
| 119 |
convert_md_to_html(md, HTML_DIR)
|
| 120 |
print(f"π All reports converted to HTML at: {HTML_DIR}")
|
| 121 |
|
| 122 |
+
|
| 123 |
# import os
|
| 124 |
# import sys
|
| 125 |
# from datetime import datetime
|
| 126 |
# from dotenv import load_dotenv
|
| 127 |
+
# import pandas as pd
|
| 128 |
|
| 129 |
# from image_search import search_unsplash_image
|
| 130 |
# from md_html import convert_single_md_to_html as convert_md_to_html
|
| 131 |
# from news_analysis import fetch_deep_news, generate_value_investor_report
|
|
|
|
|
|
|
| 132 |
# from csv_utils import detect_changes
|
| 133 |
|
|
|
|
| 134 |
# # Setup paths
|
| 135 |
# BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # one level up from src/
|
| 136 |
# DATA_DIR = os.path.join(BASE_DIR, "data")
|
|
|
|
| 152 |
# >
|
| 153 |
# """
|
| 154 |
|
| 155 |
+
# def run_value_investing_analysis(csv_path, progress_callback=None):
|
| 156 |
# current_df = pd.read_csv(csv_path)
|
| 157 |
# prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
|
| 158 |
+
|
| 159 |
# if os.path.exists(prev_path):
|
| 160 |
# previous_df = pd.read_csv(prev_path)
|
| 161 |
# changed_df = detect_changes(current_df, previous_df)
|
| 162 |
# if changed_df.empty:
|
| 163 |
+
# if progress_callback:
|
| 164 |
+
# progress_callback("β
No changes detected. Skipping processing.")
|
| 165 |
# return []
|
| 166 |
# else:
|
| 167 |
# changed_df = current_df
|
|
|
|
| 171 |
# for _, row in changed_df.iterrows():
|
| 172 |
# topic = row.get("topic")
|
| 173 |
# timespan = row.get("timespan_days", 7)
|
| 174 |
+
|
| 175 |
+
# if progress_callback:
|
| 176 |
+
# progress_callback(f"π Processing: {topic} ({timespan} days)")
|
| 177 |
|
| 178 |
# news = fetch_deep_news(topic, timespan)
|
| 179 |
# if not news:
|
| 180 |
+
# if progress_callback:
|
| 181 |
+
# progress_callback(f"β οΈ No news found for: {topic}")
|
| 182 |
# continue
|
| 183 |
|
| 184 |
+
# if progress_callback:
|
| 185 |
+
# progress_callback(f"π§ Analyzing news for: {topic}")
|
| 186 |
|
| 187 |
+
# report_body = generate_value_investor_report(topic, news)
|
|
|
|
| 188 |
|
| 189 |
+
# # Use placeholder image instead of API call
|
| 190 |
+
# image_url = "https://via.placeholder.com/1281x721?text=No+Image"
|
| 191 |
+
# image_credit = "Image unavailable"
|
| 192 |
|
| 193 |
# metrics_md = build_metrics_box(topic, len(news))
|
| 194 |
# full_md = metrics_md + report_body
|
|
|
|
| 203 |
# filepath = os.path.join(DATA_DIR, filename)
|
| 204 |
# counter += 1
|
| 205 |
|
| 206 |
+
# if progress_callback:
|
| 207 |
+
# progress_callback(f"π Saving markdown for: {topic}")
|
| 208 |
+
|
| 209 |
# with open(filepath, "w", encoding="utf-8") as f:
|
| 210 |
# f.write(full_md)
|
| 211 |
|
| 212 |
# new_md_files.append(filepath)
|
| 213 |
|
| 214 |
+
# if progress_callback:
|
| 215 |
+
# progress_callback(f"β
Markdown reports saved to: `{DATA_DIR}`")
|
| 216 |
+
|
| 217 |
# current_df.to_csv(prev_path, index=False)
|
| 218 |
# return new_md_files
|
| 219 |
|
| 220 |
+
# def run_pipeline(csv_path, tavily_api_key, progress_callback=None):
|
|
|
|
| 221 |
# os.environ["TAVILY_API_KEY"] = tavily_api_key
|
| 222 |
|
| 223 |
+
# new_md_files = run_value_investing_analysis(csv_path, progress_callback)
|
| 224 |
# new_html_paths = []
|
| 225 |
|
| 226 |
# for md_path in new_md_files:
|
| 227 |
+
# if progress_callback:
|
| 228 |
+
# progress_callback(f"π Converting to HTML: {os.path.basename(md_path)}")
|
| 229 |
+
|
| 230 |
# convert_md_to_html(md_path, HTML_DIR)
|
| 231 |
# html_path = os.path.join(HTML_DIR, os.path.basename(md_path).replace(".md", ".html"))
|
| 232 |
# new_html_paths.append(html_path)
|
| 233 |
|
| 234 |
# return new_html_paths
|
| 235 |
|
|
|
|
| 236 |
# if __name__ == "__main__":
|
| 237 |
# md_files = run_value_investing_analysis(CSV_PATH)
|
| 238 |
# for md in md_files:
|
| 239 |
# convert_md_to_html(md, HTML_DIR)
|
| 240 |
# print(f"π All reports converted to HTML at: {HTML_DIR}")
|
| 241 |
|
|
|