Update app.py
Browse files
app.py
CHANGED
@@ -47,14 +47,12 @@ def fetch_from_web(query):
|
|
47 |
)
|
48 |
return {"sources": response['results']}
|
49 |
|
50 |
-
|
51 |
class Sentiment(BaseModel):
|
52 |
summary: str
|
53 |
reasoning: str
|
54 |
topics: List[str]
|
55 |
sentiment: Literal['positive', 'negative', 'neutral']
|
56 |
|
57 |
-
|
58 |
def analyze_sentiment(article):
|
59 |
sentiment_prompt = f"""
|
60 |
Analyze the following news article about a company:
|
@@ -110,7 +108,6 @@ def analyze_sentiment(article):
|
|
110 |
logger.error(f"Error parsing sentiment output: {e}")
|
111 |
return None
|
112 |
|
113 |
-
|
114 |
def generate_comparative_sentiment(articles):
|
115 |
sentiment_counts = {"Positive": 0, "Negative": 0, "Neutral": 0}
|
116 |
|
@@ -165,7 +162,6 @@ def generate_comparative_sentiment(articles):
|
|
165 |
|
166 |
return comparative_sentiment
|
167 |
|
168 |
-
|
169 |
def get_summaries_by_sentiment(articles):
|
170 |
pos_sum = []
|
171 |
neg_sum = []
|
@@ -191,7 +187,6 @@ def get_summaries_by_sentiment(articles):
|
|
191 |
|
192 |
return pos_sum, neg_sum, neutral_sum
|
193 |
|
194 |
-
|
195 |
def comparative_analysis(pos_sum, neg_sum, neutral_sum):
|
196 |
prompt = f"""
|
197 |
Perform a detailed comparative analysis of the sentiment across three categories of articles (Positive, Negative, and Neutral) about a specific company. Address the following aspects:
|
@@ -223,7 +218,7 @@ def comparative_analysis(pos_sum, neg_sum, neutral_sum):
|
|
223 |
|
224 |
def generate_final_report(pos_sum, neg_sum, neutral_sum, comparative_sentiment):
|
225 |
final_report_prompt = f"""
|
226 |
-
|
227 |
|
228 |
### 1. Executive Summary
|
229 |
- Overview of sentiment distribution: {comparative_sentiment["Sentiment Distribution"]['Positive']} positive, {comparative_sentiment["Sentiment Distribution"]['Negative']} negative, {comparative_sentiment["Sentiment Distribution"]['Neutral']} neutral.
|
@@ -272,7 +267,6 @@ def generate_final_report(pos_sum, neg_sum, neutral_sum, comparative_sentiment):
|
|
272 |
|
273 |
### 9. Appendix
|
274 |
- Full article details (title, publication, date, author, URL).
|
275 |
-
- Sentiment scoring methodology.
|
276 |
- Media monitoring metrics (reach, engagement, etc.).
|
277 |
"""
|
278 |
|
@@ -280,10 +274,10 @@ def generate_final_report(pos_sum, neg_sum, neutral_sum, comparative_sentiment):
|
|
280 |
|
281 |
return response
|
282 |
|
|
|
283 |
|
284 |
-
def translate(report):
|
285 |
translation_prompt = f"""
|
286 |
-
Translate the following corporate sentiment analysis report into
|
287 |
|
288 |
{report}
|
289 |
|
@@ -292,7 +286,6 @@ def translate(report):
|
|
292 |
translation = call_llm(translation_prompt)
|
293 |
return translation
|
294 |
|
295 |
-
|
296 |
def text_to_speech(text):
|
297 |
url = "https://api.elevenlabs.io/v1/text-to-speech/JBFqnCBsd6RMkjVDRZzb?output_format=mp3_44100_128"
|
298 |
|
@@ -325,6 +318,7 @@ def text_to_speech(text):
|
|
325 |
st.title("Company Sentiment Analyzer")
|
326 |
|
327 |
company_name = st.text_input("Enter Company Name")
|
|
|
328 |
|
329 |
# Save your file with the correct path
|
330 |
|
@@ -338,7 +332,7 @@ if st.button("Fetch Sentiment Data"):
|
|
338 |
else:
|
339 |
sentiment_output = [
|
340 |
analyze_sentiment(article)
|
341 |
-
for article in web_results["sources"]
|
342 |
]
|
343 |
sentiment_output = [s for s in sentiment_output if s is not None]
|
344 |
logger.info(f"Generating comparative sentiment")
|
@@ -358,9 +352,9 @@ if st.button("Fetch Sentiment Data"):
|
|
358 |
)
|
359 |
|
360 |
logger.info(f"Translating Report")
|
361 |
-
hindi_translation = translate(final_report)
|
362 |
|
363 |
-
|
364 |
#audio_data = text_to_speech(hindi_translation)
|
365 |
|
366 |
output_dict = {
|
@@ -369,7 +363,7 @@ if st.button("Fetch Sentiment Data"):
|
|
369 |
"comparative_sentiment": comparative_sentiment,
|
370 |
"final_report": final_report,
|
371 |
"hindi_translation": hindi_translation,
|
372 |
-
|
373 |
}
|
374 |
|
375 |
st.subheader("Company Name")
|
@@ -378,13 +372,11 @@ if st.button("Fetch Sentiment Data"):
|
|
378 |
st.subheader("Final Report")
|
379 |
st.write(output_dict.get("final_report"))
|
380 |
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
# st.error("Failed to generate audio.")
|
387 |
-
|
388 |
|
389 |
except requests.exceptions.RequestException as e:
|
390 |
st.error(f"Error fetching data: {e}")
|
|
|
47 |
)
|
48 |
return {"sources": response['results']}
|
49 |
|
|
|
50 |
class Sentiment(BaseModel):
|
51 |
summary: str
|
52 |
reasoning: str
|
53 |
topics: List[str]
|
54 |
sentiment: Literal['positive', 'negative', 'neutral']
|
55 |
|
|
|
56 |
def analyze_sentiment(article):
|
57 |
sentiment_prompt = f"""
|
58 |
Analyze the following news article about a company:
|
|
|
108 |
logger.error(f"Error parsing sentiment output: {e}")
|
109 |
return None
|
110 |
|
|
|
111 |
def generate_comparative_sentiment(articles):
|
112 |
sentiment_counts = {"Positive": 0, "Negative": 0, "Neutral": 0}
|
113 |
|
|
|
162 |
|
163 |
return comparative_sentiment
|
164 |
|
|
|
165 |
def get_summaries_by_sentiment(articles):
|
166 |
pos_sum = []
|
167 |
neg_sum = []
|
|
|
187 |
|
188 |
return pos_sum, neg_sum, neutral_sum
|
189 |
|
|
|
190 |
def comparative_analysis(pos_sum, neg_sum, neutral_sum):
|
191 |
prompt = f"""
|
192 |
Perform a detailed comparative analysis of the sentiment across three categories of articles (Positive, Negative, and Neutral) about a specific company. Address the following aspects:
|
|
|
218 |
|
219 |
def generate_final_report(pos_sum, neg_sum, neutral_sum, comparative_sentiment):
|
220 |
final_report_prompt = f"""
|
221 |
+
Corporate News Sentiment Analysis Report:
|
222 |
|
223 |
### 1. Executive Summary
|
224 |
- Overview of sentiment distribution: {comparative_sentiment["Sentiment Distribution"]['Positive']} positive, {comparative_sentiment["Sentiment Distribution"]['Negative']} negative, {comparative_sentiment["Sentiment Distribution"]['Neutral']} neutral.
|
|
|
267 |
|
268 |
### 9. Appendix
|
269 |
- Full article details (title, publication, date, author, URL).
|
|
|
270 |
- Media monitoring metrics (reach, engagement, etc.).
|
271 |
"""
|
272 |
|
|
|
274 |
|
275 |
return response
|
276 |
|
277 |
+
def translate(report, target_language):
|
278 |
|
|
|
279 |
translation_prompt = f"""
|
280 |
+
Translate the following corporate sentiment analysis report into {target_language}:
|
281 |
|
282 |
{report}
|
283 |
|
|
|
286 |
translation = call_llm(translation_prompt)
|
287 |
return translation
|
288 |
|
|
|
289 |
def text_to_speech(text):
|
290 |
url = "https://api.elevenlabs.io/v1/text-to-speech/JBFqnCBsd6RMkjVDRZzb?output_format=mp3_44100_128"
|
291 |
|
|
|
318 |
st.title("Company Sentiment Analyzer")
|
319 |
|
320 |
company_name = st.text_input("Enter Company Name")
|
321 |
+
target_language = st.text_input("Enter Target Language for Translation")
|
322 |
|
323 |
# Save your file with the correct path
|
324 |
|
|
|
332 |
else:
|
333 |
sentiment_output = [
|
334 |
analyze_sentiment(article)
|
335 |
+
for article in web_results["sources"]
|
336 |
]
|
337 |
sentiment_output = [s for s in sentiment_output if s is not None]
|
338 |
logger.info(f"Generating comparative sentiment")
|
|
|
352 |
)
|
353 |
|
354 |
logger.info(f"Translating Report")
|
355 |
+
hindi_translation = translate(final_report, target_language= target_language)
|
356 |
|
357 |
+
logger.info(f"Generating Speech from Text")
|
358 |
#audio_data = text_to_speech(hindi_translation)
|
359 |
|
360 |
output_dict = {
|
|
|
363 |
"comparative_sentiment": comparative_sentiment,
|
364 |
"final_report": final_report,
|
365 |
"hindi_translation": hindi_translation,
|
366 |
+
"audio_text": "",
|
367 |
}
|
368 |
|
369 |
st.subheader("Company Name")
|
|
|
372 |
st.subheader("Final Report")
|
373 |
st.write(output_dict.get("final_report"))
|
374 |
|
375 |
+
st.subheader("Translated Report")
|
376 |
+
st.write(output_dict.get("hindi_translation", "Please Check Your Internet Connection"))
|
377 |
+
|
378 |
+
st.subheader("Speech To Text")
|
379 |
+
st.write("Request Timed Out Please Check Your Internet Connection")
|
|
|
|
|
380 |
|
381 |
except requests.exceptions.RequestException as e:
|
382 |
st.error(f"Error fetching data: {e}")
|