Spaces:
Running
Running
File size: 35,451 Bytes
dcf746e 3223ff3 dcf746e fe49b51 dcf746e 85c9bd6 61242f1 0e041b2 2e66ec2 44e9a1d 5fa1ee3 cdd7269 70eb2ff c425950 61242f1 880f9ee 61242f1 cdd7269 61242f1 cdd7269 61242f1 cdd7269 61242f1 314bf31 c425950 db87ed3 18ec658 e985ab1 314bf31 97165e2 0e041b2 59084a2 cd9d0c4 59084a2 ff33c96 61242f1 ff33c96 70eb2ff ff33c96 70eb2ff 2ff005a f4e6753 2ff005a 5fa1ee3 2ff005a 2e66ec2 3f6cb23 ff33c96 2e66ec2 9efe9bb 2e66ec2 9efe9bb 2e66ec2 5fa1ee3 2e66ec2 5fa1ee3 97165e2 5fa1ee3 97165e2 5fa1ee3 44e9a1d 5fa1ee3 f4e6753 5fa1ee3 f4e6753 5fa1ee3 2e66ec2 ff33c96 2e66ec2 97165e2 00cf45f 97165e2 00cf45f 35f5bd8 44e9a1d ff33c96 00cf45f ff33c96 00cf45f 70eb2ff 00cf45f 44e9a1d 00cf45f 70eb2ff 00cf45f 44e9a1d 00cf45f 97165e2 00cf45f c425950 00cf45f 44e9a1d 00cf45f c425950 00cf45f 70eb2ff ff33c96 00cf45f ad34ca4 00cf45f 70eb2ff ff33c96 00cf45f 70eb2ff ff33c96 00cf45f 70eb2ff 00cf45f 370367a 00cf45f f63ecfa ab5c457 00cf45f 97165e2 00cf45f 70eb2ff 00cf45f 97165e2 00cf45f 97165e2 00cf45f 97165e2 00cf45f 97165e2 00cf45f 97165e2 00cf45f dd3a224 ff33c96 2e66ec2 00cf45f 97165e2 00cf45f 97165e2 00cf45f 97165e2 00cf45f 97165e2 00cf45f 97165e2 dd78c27 97165e2 c425950 ab5c457 00cf45f ab5c457 00cf45f 70eb2ff 00cf45f c425950 ab5c457 00cf45f ab5c457 00cf45f ab5c457 00cf45f ab5c457 7b16cc6 70eb2ff 00cf45f 70eb2ff 7b16cc6 00cf45f 7b16cc6 00cf45f 7b16cc6 c425950 ab5c457 97165e2 00cf45f 70eb2ff 00cf45f 70eb2ff 00cf45f 70eb2ff 00cf45f 70eb2ff 00cf45f c425950 00cf45f 7b16cc6 00cf45f 7fcb8db 2ff005a 5fa1ee3 97165e2 2ff005a 97165e2 dd78c27 97165e2 ff33c96 97165e2 44e9a1d 97165e2 00cf45f 97165e2 ff33c96 97165e2 00cf45f c425950 00cf45f dd78c27 00cf45f c425950 00cf45f c425950 35f5bd8 70eb2ff 00cf45f c425950 70eb2ff 00cf45f 35f5bd8 70eb2ff 00cf45f c425950 35f5bd8 c425950 ad34ca4 c425950 ad34ca4 c425950 ad34ca4 c425950 70eb2ff c425950 00cf45f c425950 70eb2ff 00cf45f ad34ca4 c425950 70eb2ff 00cf45f 97165e2 70eb2ff 97165e2 00cf45f c425950 00cf45f ad34ca4 70eb2ff c425950 00cf45f c425950 00cf45f c425950 8ba26a5 c425950 70eb2ff c425950 00cf45f 44e9a1d 35f5bd8 ad34ca4 44e9a1d 97165e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 |
# app.py
import gradio as gr
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import requests
import time
import re
import logging
import os
import sys
import threading
from queue import Queue, Empty
import json
from concurrent.futures import ThreadPoolExecutor
# Import OpenAI library
import openai
# Suppress only the single warning from urllib3 needed.
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
# Set up logging to output to the console
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Create a console handler
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.INFO)
# Create a formatter and set it for the handler
formatter = logging.Formatter('%(asctime)s %(levelname)s %(name)s %(message)s')
console_handler.setFormatter(formatter)
# Add the handler to the logger
logger.addHandler(console_handler)
# Initialize variables and models
logger.info("Initializing variables and models")
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index = None
bookmarks = []
fetch_cache = {}
# Lock for thread-safe operations
lock = threading.Lock()
# Define the categories
CATEGORIES = [
"Social Media",
"News and Media",
"Education and Learning",
"Entertainment",
"Shopping and E-commerce",
"Finance and Banking",
"Technology",
"Health and Fitness",
"Travel and Tourism",
"Food and Recipes",
"Sports",
"Arts and Culture",
"Government and Politics",
"Business and Economy",
"Science and Research",
"Personal Blogs and Journals",
"Job Search and Careers",
"Music and Audio",
"Videos and Movies",
"Reference and Knowledge Bases",
"Dead Link",
"Uncategorized",
]
# Set up OpenAI API key and base URL
OPENAI_API_KEY = os.getenv('GROQ_API_KEY') # Ensure this environment variable is set correctly
if not OPENAI_API_KEY:
logger.error("GROQ_API_KEY environment variable not set.")
openai.api_key = OPENAI_API_KEY
openai.api_base = "https://api.groq.com/openai/v1" # Ensure this is the correct base URL for your API
# Rate Limiter Configuration
RPM_LIMIT = 60 # Requests per minute (adjust based on your API's limit)
TPM_LIMIT = 60000 # Tokens per minute (adjust based on your API's limit)
BATCH_SIZE = 5 # Number of bookmarks per batch
# Implementing a Token Bucket Rate Limiter
class TokenBucket:
def __init__(self, rate, capacity):
self.rate = rate # tokens per second
self.capacity = capacity
self.tokens = capacity
self.timestamp = time.time()
self.lock = threading.Lock()
def consume(self, tokens=1):
with self.lock:
now = time.time()
elapsed = now - self.timestamp
refill = elapsed * self.rate
self.tokens = min(self.capacity, self.tokens + refill)
self.timestamp = now
if self.tokens >= tokens:
self.tokens -= tokens
return True
else:
return False
def wait_for_token(self, tokens=1):
while not self.consume(tokens):
time.sleep(0.05)
# Initialize rate limiters
rpm_rate = RPM_LIMIT / 60 # tokens per second
tpm_rate = TPM_LIMIT / 60 # tokens per second
rpm_bucket = TokenBucket(rate=rpm_rate, capacity=RPM_LIMIT)
tpm_bucket = TokenBucket(rate=tpm_rate, capacity=TPM_LIMIT)
# Queue for LLM tasks
llm_queue = Queue()
def categorize_based_on_summary(summary, url):
"""
Assign category based on keywords in the summary or URL.
"""
summary_lower = summary.lower()
url_lower = url.lower()
if 'social media' in summary_lower or 'twitter' in summary_lower or 'x.com' in url_lower:
return 'Social Media'
elif 'wikipedia' in url_lower:
return 'Reference and Knowledge Bases'
elif 'cloud computing' in summary_lower or 'aws' in summary_lower:
return 'Technology'
elif 'news' in summary_lower or 'media' in summary_lower:
return 'News and Media'
elif 'education' in summary_lower or 'learning' in summary_lower:
return 'Education and Learning'
# Add more conditions as needed
else:
return 'Uncategorized'
def validate_category(bookmark):
"""
Further validate and adjust the category if needed.
"""
# Example: Specific cases based on URL
url_lower = bookmark['url'].lower()
if 'facebook' in url_lower or 'x.com' in url_lower:
return 'Social Media'
elif 'wikipedia' in url_lower:
return 'Reference and Knowledge Bases'
elif 'aws.amazon.com' in url_lower:
return 'Technology'
# Add more specific cases as needed
else:
return bookmark['category']
def extract_main_content(soup):
"""
Extract the main content from a webpage while filtering out boilerplate content.
"""
if not soup:
return ""
# Remove unwanted elements
for element in soup(['script', 'style', 'header', 'footer', 'nav', 'aside', 'form', 'noscript']):
element.decompose()
# Extract text from <p> tags
p_tags = soup.find_all('p')
if p_tags:
content = ' '.join([p.get_text(strip=True, separator=' ') for p in p_tags])
else:
# Fallback to body content
content = soup.get_text(separator=' ', strip=True)
# Clean up the text
content = re.sub(r'\s+', ' ', content)
# Truncate content to a reasonable length (e.g., 1500 words)
words = content.split()
if len(words) > 1500:
content = ' '.join(words[:1500])
return content
def get_page_metadata(soup):
"""
Extract metadata from the webpage including title, description, and keywords.
"""
metadata = {
'title': '',
'description': '',
'keywords': ''
}
if not soup:
return metadata
# Get title
title_tag = soup.find('title')
if title_tag and title_tag.string:
metadata['title'] = title_tag.string.strip()
# Get meta description
meta_desc = (
soup.find('meta', attrs={'name': 'description'}) or
soup.find('meta', attrs={'property': 'og:description'}) or
soup.find('meta', attrs={'name': 'twitter:description'})
)
if meta_desc:
metadata['description'] = meta_desc.get('content', '').strip()
# Get meta keywords
meta_keywords = soup.find('meta', attrs={'name': 'keywords'})
if meta_keywords:
metadata['keywords'] = meta_keywords.get('content', '').strip()
# Get OG title if main title is empty
if not metadata['title']:
og_title = soup.find('meta', attrs={'property': 'og:title'})
if og_title:
metadata['title'] = og_title.get('content', '').strip()
return metadata
def llm_worker():
"""
Worker thread to process LLM tasks from the queue while respecting rate limits.
"""
logger.info("LLM worker started.")
while True:
batch = []
try:
# Collect bookmarks up to BATCH_SIZE
while len(batch) < BATCH_SIZE:
bookmark = llm_queue.get(timeout=1)
if bookmark is None:
# Shutdown signal
logger.info("LLM worker shutting down.")
return
if not bookmark.get('dead_link') and not bookmark.get('slow_link'):
batch.append(bookmark)
else:
# Skip processing for dead or slow links
bookmark['summary'] = 'No summary available.'
bookmark['category'] = 'Uncategorized'
llm_queue.task_done()
except Empty:
pass # No more bookmarks at the moment
if batch:
try:
# Rate Limiting
rpm_bucket.wait_for_token()
# Estimate tokens: prompt + max_tokens
# Here, we assume max_tokens=150 per bookmark
total_tokens = 150 * len(batch)
tpm_bucket.wait_for_token(tokens=total_tokens)
# Prepare prompt
prompt = "You are an assistant that creates concise webpage summaries and assigns categories.\n\n"
prompt += "Provide summaries and categories for the following bookmarks:\n\n"
for idx, bookmark in enumerate(batch, 1):
prompt += f"Bookmark {idx}:\nURL: {bookmark['url']}\nTitle: {bookmark['title']}\n\n"
# Corrected f-string without backslashes
prompt += f"Categories:\n{', '.join([f'\"{cat}\"' for cat in CATEGORIES])}\n\n"
prompt += "Format your response as a JSON object where each key is the bookmark URL and the value is another JSON object containing 'summary' and 'category'.\n\n"
prompt += "Example:\n"
prompt += "{\n"
prompt += " \"https://example.com\": {\n"
prompt += " \"summary\": \"This is an example summary.\",\n"
prompt += " \"category\": \"Technology\"\n"
prompt += " }\n"
prompt += "}\n\n"
prompt += "Now, provide the summaries and categories for the bookmarks listed above."
response = openai.ChatCompletion.create(
model='llama-3.1-70b-versatile', # Ensure this model is correct and available
messages=[
{"role": "user", "content": prompt}
],
max_tokens=150 * len(batch),
temperature=0.5,
)
content = response['choices'][0]['message']['content'].strip()
if not content:
raise ValueError("Empty response received from the model.")
# Parse JSON response
try:
json_response = json.loads(content)
for bookmark in batch:
url = bookmark['url']
if url in json_response:
summary = json_response[url].get('summary', '').strip()
category = json_response[url].get('category', '').strip()
if not summary:
summary = 'No summary available.'
bookmark['summary'] = summary
if category in CATEGORIES:
bookmark['category'] = category
else:
# Fallback to keyword-based categorization
bookmark['category'] = categorize_based_on_summary(summary, url)
else:
logger.warning(f"No data returned for {url}. Using fallback methods.")
bookmark['summary'] = 'No summary available.'
bookmark['category'] = 'Uncategorized'
# Additional keyword-based validation
bookmark['category'] = validate_category(bookmark)
logger.info(f"Processed bookmark: {url}")
except json.JSONDecodeError:
logger.error("Failed to parse JSON response from LLM. Using fallback methods.")
for bookmark in batch:
bookmark['summary'] = 'No summary available.'
bookmark['category'] = categorize_based_on_summary(bookmark.get('summary', ''), bookmark['url'])
bookmark['category'] = validate_category(bookmark)
except Exception as e:
logger.error(f"Error processing LLM response: {e}", exc_info=True)
for bookmark in batch:
bookmark['summary'] = 'No summary available.'
bookmark['category'] = 'Uncategorized'
except openai.error.RateLimitError as e:
logger.warning(f"LLM Rate limit reached. Retrying after 60 seconds.")
# Re-enqueue the entire batch for retry
for bookmark in batch:
llm_queue.put(bookmark)
time.sleep(60) # Wait before retrying
continue # Skip the rest and retry
except Exception as e:
logger.error(f"Error during LLM processing: {e}", exc_info=True)
for bookmark in batch:
bookmark['summary'] = 'No summary available.'
bookmark['category'] = 'Uncategorized'
finally:
# Mark all bookmarks in the batch as done
for _ in batch:
llm_queue.task_done()
def generate_summary_and_assign_category(bookmark):
"""
Enqueue bookmarks for LLM processing.
"""
logger.info(f"Enqueuing bookmark for LLM processing: {bookmark.get('url')}")
llm_queue.put(bookmark)
def parse_bookmarks(file_content):
"""
Parse bookmarks from HTML file.
"""
logger.info("Parsing bookmarks")
try:
soup = BeautifulSoup(file_content, 'html.parser')
extracted_bookmarks = []
for link in soup.find_all('a'):
url = link.get('href')
title = link.text.strip()
if url and title:
if url.startswith('http://') or url.startswith('https://'):
extracted_bookmarks.append({'url': url, 'title': title})
else:
logger.info(f"Skipping non-http/https URL: {url}")
logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
return extracted_bookmarks
except Exception as e:
logger.error("Error parsing bookmarks: %s", e, exc_info=True)
raise
def fetch_url_info(bookmark):
"""
Fetch information about a URL.
"""
url = bookmark['url']
if url in fetch_cache:
with lock:
bookmark.update(fetch_cache[url])
return
try:
logger.info(f"Fetching URL info for: {url}")
headers = {
'User-Agent': 'Mozilla/5.0',
'Accept-Language': 'en-US,en;q=0.9',
}
response = requests.get(url, headers=headers, timeout=5, verify=False, allow_redirects=True)
bookmark['etag'] = response.headers.get('ETag', 'N/A')
bookmark['status_code'] = response.status_code
content = response.text
logger.info(f"Fetched content length for {url}: {len(content)} characters")
if response.status_code >= 500:
bookmark['dead_link'] = True
bookmark['html_content'] = ''
bookmark['description'] = ''
logger.warning(f"Dead link detected: {url} with status {response.status_code}")
else:
bookmark['dead_link'] = False
bookmark['html_content'] = content
# Extract description from metadata
soup = BeautifulSoup(content, 'html.parser')
metadata = get_page_metadata(soup)
bookmark['description'] = metadata.get('description', '')
logger.info(f"Fetched information for {url}")
except requests.exceptions.Timeout:
bookmark['dead_link'] = False
bookmark['etag'] = 'N/A'
bookmark['status_code'] = 'Timeout'
bookmark['description'] = ''
bookmark['html_content'] = ''
bookmark['slow_link'] = True
logger.warning(f"Timeout while fetching {url}. Marking as 'Slow'.")
except Exception as e:
bookmark['dead_link'] = True
bookmark['etag'] = 'N/A'
bookmark['status_code'] = 'Error'
bookmark['description'] = ''
bookmark['html_content'] = ''
logger.error(f"Error fetching URL info for {url}: {e}", exc_info=True)
finally:
with lock:
fetch_cache[url] = {
'etag': bookmark.get('etag'),
'status_code': bookmark.get('status_code'),
'dead_link': bookmark.get('dead_link'),
'description': bookmark.get('description'),
'html_content': bookmark.get('html_content', ''),
'slow_link': bookmark.get('slow_link', False),
}
def vectorize_and_index(bookmarks_list):
"""
Create vector embeddings for bookmarks and build FAISS index with ID mapping.
"""
global faiss_index
logger.info("Vectorizing summaries and building FAISS index")
try:
summaries = [bookmark['summary'] for bookmark in bookmarks_list]
embeddings = embedding_model.encode(summaries)
dimension = embeddings.shape[1]
index = faiss.IndexIDMap(faiss.IndexFlatL2(dimension))
ids = np.array([bookmark['id'] for bookmark in bookmarks_list], dtype=np.int64)
index.add_with_ids(np.array(embeddings).astype('float32'), ids)
faiss_index = index
logger.info("FAISS index built successfully with IDs")
return index
except Exception as e:
logger.error(f"Error in vectorizing and indexing: {e}", exc_info=True)
raise
def display_bookmarks():
"""
Generate HTML display for bookmarks.
"""
logger.info("Generating HTML display for bookmarks")
cards = ''
for i, bookmark in enumerate(bookmarks):
index = i + 1
if bookmark.get('dead_link'):
status = "β Dead Link"
card_style = "border: 2px solid red;"
text_style = "color: white;"
summary = 'No summary available.'
elif bookmark.get('slow_link'):
status = "β³ Slow Response"
card_style = "border: 2px solid orange;"
text_style = "color: white;"
summary = bookmark.get('summary', 'No summary available.')
else:
status = "β
Active"
card_style = "border: 2px solid green;"
text_style = "color: white;"
summary = bookmark.get('summary', 'No summary available.')
title = bookmark['title']
url = bookmark['url']
etag = bookmark.get('etag', 'N/A')
category = bookmark.get('category', 'Uncategorized')
# Escape HTML content to prevent XSS attacks
from html import escape
title = escape(title)
url = escape(url)
summary = escape(summary)
category = escape(category)
card_html = f'''
<div class="card" style="{card_style} padding: 10px; margin: 10px; border-radius: 5px; background-color: #1e1e1e;">
<div class="card-content">
<h3 style="{text_style}">{index}. {title} {status}</h3>
<p style="{text_style}"><strong>Category:</strong> {category}</p>
<p style="{text_style}"><strong>URL:</strong> <a href="{url}" target="_blank" style="{text_style}">{url}</a></p>
<p style="{text_style}"><strong>ETag:</strong> {etag}</p>
<p style="{text_style}"><strong>Summary:</strong> {summary}</p>
</div>
</div>
'''
cards += card_html
logger.info("HTML display generated")
return cards
def process_uploaded_file(file, state_bookmarks):
"""
Process the uploaded bookmarks file.
"""
global bookmarks, faiss_index
logger.info("Processing uploaded file")
if file is None:
logger.warning("No file uploaded")
return "Please upload a bookmarks HTML file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
try:
file_content = file.decode('utf-8')
except UnicodeDecodeError as e:
logger.error(f"Error decoding the file: {e}", exc_info=True)
return "Error decoding the file. Please ensure it's a valid HTML file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
try:
bookmarks = parse_bookmarks(file_content)
except Exception as e:
logger.error(f"Error parsing bookmarks: {e}", exc_info=True)
return "Error parsing the bookmarks HTML file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
if not bookmarks:
logger.warning("No bookmarks found in the uploaded file")
return "No bookmarks found in the uploaded file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
# Assign unique IDs to bookmarks
for idx, bookmark in enumerate(bookmarks):
bookmark['id'] = idx
# Fetch bookmark info concurrently
logger.info("Fetching URL info concurrently")
with ThreadPoolExecutor(max_workers=10) as executor:
executor.map(fetch_url_info, bookmarks)
# Enqueue bookmarks for LLM processing
logger.info("Enqueuing bookmarks for LLM processing")
for bookmark in bookmarks:
generate_summary_and_assign_category(bookmark)
# Wait until all LLM tasks are completed
llm_queue.join()
logger.info("All LLM tasks have been processed")
try:
faiss_index = vectorize_and_index(bookmarks)
except Exception as e:
logger.error(f"Error building FAISS index: {e}", exc_info=True)
return "Error building search index.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
message = f"β
Successfully processed {len(bookmarks)} bookmarks."
logger.info(message)
# Generate displays and updates
bookmark_html = display_bookmarks()
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
for i, bookmark in enumerate(bookmarks)]
# Update state
state_bookmarks = bookmarks.copy()
return message, bookmark_html, state_bookmarks, bookmark_html, gr.update(choices=choices)
def delete_selected_bookmarks(selected_indices, state_bookmarks):
"""
Delete selected bookmarks and remove their vectors from the FAISS index.
"""
global bookmarks, faiss_index
if not selected_indices:
return "β οΈ No bookmarks selected.", gr.update(choices=[]), display_bookmarks()
ids_to_delete = []
indices_to_delete = []
for s in selected_indices:
idx = int(s.split('.')[0]) - 1
if 0 <= idx < len(bookmarks):
bookmark_id = bookmarks[idx]['id']
ids_to_delete.append(bookmark_id)
indices_to_delete.append(idx)
logger.info(f"Deleting bookmark at index {idx + 1}")
# Remove vectors from FAISS index
if faiss_index is not None and ids_to_delete:
faiss_index.remove_ids(np.array(ids_to_delete, dtype=np.int64))
# Remove bookmarks from the list (reverse order to avoid index shifting)
for idx in sorted(indices_to_delete, reverse=True):
bookmarks.pop(idx)
message = "ποΈ Selected bookmarks deleted successfully."
logger.info(message)
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
for i, bookmark in enumerate(bookmarks)]
# Update state
state_bookmarks = bookmarks.copy()
return message, gr.update(choices=choices), display_bookmarks()
def edit_selected_bookmarks_category(selected_indices, new_category, state_bookmarks):
"""
Edit category of selected bookmarks.
"""
if not selected_indices:
return "β οΈ No bookmarks selected.", gr.update(choices=[]), display_bookmarks(), state_bookmarks
if not new_category:
return "β οΈ No new category selected.", gr.update(choices=[]), display_bookmarks(), state_bookmarks
indices = [int(s.split('.')[0])-1 for s in selected_indices]
for idx in indices:
if 0 <= idx < len(bookmarks):
bookmarks[idx]['category'] = new_category
logger.info(f"Updated category for bookmark {idx + 1} to {new_category}")
message = "βοΈ Category updated for selected bookmarks."
logger.info(message)
# Update choices and display
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
for i, bookmark in enumerate(bookmarks)]
# Update state
state_bookmarks = bookmarks.copy()
return message, gr.update(choices=choices), display_bookmarks(), state_bookmarks
def export_bookmarks():
"""
Export bookmarks to an HTML file.
"""
if not bookmarks:
logger.warning("No bookmarks to export")
return None
try:
logger.info("Exporting bookmarks to HTML")
soup = BeautifulSoup("<!DOCTYPE NETSCAPE-Bookmark-file-1><Title>Bookmarks</Title><H1>Bookmarks</H1>", 'html.parser')
dl = soup.new_tag('DL')
for bookmark in bookmarks:
dt = soup.new_tag('DT')
a = soup.new_tag('A', href=bookmark['url'])
a.string = bookmark['title']
dt.append(a)
dl.append(dt)
soup.append(dl)
html_content = str(soup)
output_file = "exported_bookmarks.html"
with open(output_file, 'w', encoding='utf-8') as f:
f.write(html_content)
logger.info("Bookmarks exported successfully")
return output_file
except Exception as e:
logger.error(f"Error exporting bookmarks: {e}", exc_info=True)
return None
def chatbot_response(user_query, chat_history):
"""
Generate chatbot response using the FAISS index and embeddings.
"""
if not bookmarks or faiss_index is None:
logger.warning("No bookmarks available for chatbot")
chat_history.append({"role": "assistant", "content": "β οΈ No bookmarks available. Please upload and process your bookmarks first."})
return chat_history
logger.info(f"Chatbot received query: {user_query}")
try:
chat_history.append({"role": "user", "content": user_query})
# Rate Limiting
rpm_bucket.wait_for_token()
# Estimate tokens: prompt + max_tokens
# Here, we assume max_tokens=300 per chatbot response
tpm_bucket.wait_for_token(tokens=300)
query_vector = embedding_model.encode([user_query]).astype('float32')
k = 5
distances, ids = faiss_index.search(query_vector, k)
ids = ids.flatten()
id_to_bookmark = {bookmark['id']: bookmark for bookmark in bookmarks}
# Filter out bookmarks without summaries
matching_bookmarks = [id_to_bookmark.get(id) for id in ids if id in id_to_bookmark and id_to_bookmark.get(id).get('summary')]
if not matching_bookmarks:
answer = "No relevant bookmarks found for your query."
chat_history.append({"role": "assistant", "content": answer})
return chat_history
bookmarks_info = "\n".join([
f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}"
for bookmark in matching_bookmarks
])
prompt = f"""
A user asked: "{user_query}"
Based on the bookmarks below, provide a helpful answer to the user's query, referencing the relevant bookmarks.
Bookmarks:
{bookmarks_info}
Provide a concise and helpful response.
"""
response = openai.ChatCompletion.create(
model='llama-3.1-70b-versatile', # Ensure this model is correct and available
messages=[
{"role": "user", "content": prompt}
],
max_tokens=300,
temperature=0.7,
)
answer = response['choices'][0]['message']['content'].strip()
logger.info("Chatbot response generated")
chat_history.append({"role": "assistant", "content": answer})
return chat_history
except openai.error.RateLimitError as e:
wait_time = int(e.headers.get("Retry-After", 5))
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying...")
time.sleep(wait_time)
return chatbot_response(user_query, chat_history)
except Exception as e:
error_message = f"β οΈ Error processing your query: {str(e)}"
logger.error(error_message, exc_info=True)
chat_history.append({"role": "assistant", "content": error_message})
return chat_history
def build_app():
"""
Build and launch the Gradio app.
"""
try:
logger.info("Building Gradio app")
with gr.Blocks(css="app.css") as demo:
# Initialize state
state_bookmarks = gr.State([])
# General Overview
gr.Markdown("""
# π SmartMarks - AI Browser Bookmarks Manager
Welcome to **SmartMarks**, your intelligent assistant for managing browser bookmarks. SmartMarks leverages AI to help you organize, search, and interact with your bookmarks seamlessly.
---
## π **How to Use SmartMarks**
SmartMarks is divided into three main sections:
1. **π Upload and Process Bookmarks:** Import your existing bookmarks and let SmartMarks analyze and categorize them for you.
2. **π¬ Chat with Bookmarks:** Interact with your bookmarks using natural language queries to find relevant links effortlessly.
3. **π οΈ Manage Bookmarks:** View, edit, delete, and export your bookmarks with ease.
Navigate through the tabs to explore each feature in detail.
""")
# Upload and Process Bookmarks Tab
with gr.Tab("Upload and Process Bookmarks"):
gr.Markdown("""
## π **Upload and Process Bookmarks**
### π **Steps to Upload and Process:**
1. **Upload Bookmarks File:**
- Click on the **"π Upload Bookmarks HTML File"** button.
- Select your browser's exported bookmarks HTML file from your device.
2. **Process Bookmarks:**
- After uploading, click on the **"βοΈ Process Bookmarks"** button.
- SmartMarks will parse your bookmarks, fetch additional information, generate summaries, and categorize each link based on predefined categories.
3. **View Processed Bookmarks:**
- Once processing is complete, your bookmarks will be displayed in an organized and visually appealing format below.
""")
upload = gr.File(label="π Upload Bookmarks HTML File", type='binary')
process_button = gr.Button("βοΈ Process Bookmarks")
output_text = gr.Textbox(label="β
Output", interactive=False)
bookmark_display = gr.HTML(label="π Processed Bookmarks")
# Chat with Bookmarks Tab
with gr.Tab("Chat with Bookmarks"):
gr.Markdown("""
## π¬ **Chat with Bookmarks**
### π€ **How to Interact:**
1. **Enter Your Query:**
- In the **"βοΈ Ask about your bookmarks"** textbox, type your question or keyword related to your bookmarks.
2. **Submit Your Query:**
- Click the **"π¨ Send"** button to submit your query.
3. **Receive AI-Driven Responses:**
- SmartMarks will analyze your query and provide relevant bookmarks that match your request.
4. **View Chat History:**
- All your queries and the corresponding AI responses are displayed in the chat history.
""")
chatbot = gr.Chatbot(label="π¬ Chat with SmartMarks", type='messages')
user_input = gr.Textbox(
label="βοΈ Ask about your bookmarks",
placeholder="e.g., Do I have any bookmarks about AI?"
)
chat_button = gr.Button("π¨ Send")
chat_button.click(
chatbot_response,
inputs=[user_input, chatbot],
outputs=chatbot
)
# Manage Bookmarks Tab
with gr.Tab("Manage Bookmarks"):
gr.Markdown("""
## π οΈ **Manage Bookmarks**
### ποΈ **Features:**
1. **View Bookmarks:**
- All your processed bookmarks are displayed here with their respective categories and summaries.
2. **Select Bookmarks:**
- Use the checkboxes next to each bookmark to select one, multiple, or all bookmarks you wish to manage.
3. **Delete Selected Bookmarks:**
- After selecting the desired bookmarks, click the **"ποΈ Delete Selected"** button to remove them from your list.
4. **Edit Categories:**
- Select the bookmarks you want to re-categorize.
- Choose a new category from the dropdown menu labeled **"π New Category"**.
- Click the **"βοΈ Edit Category"** button to update their categories.
5. **Export Bookmarks:**
- Click the **"πΎ Export"** button to download your updated bookmarks as an HTML file.
6. **Refresh Bookmarks:**
- Click the **"π Refresh Bookmarks"** button to ensure the latest state is reflected in the display.
""")
manage_output = gr.Textbox(label="π Status", interactive=False)
# CheckboxGroup for selecting bookmarks
bookmark_selector = gr.CheckboxGroup(
label="β
Select Bookmarks",
choices=[]
)
new_category = gr.Dropdown(
label="π New Category",
choices=CATEGORIES,
value="Uncategorized"
)
bookmark_display_manage = gr.HTML(label="π Bookmarks")
with gr.Row():
delete_button = gr.Button("ποΈ Delete Selected")
edit_category_button = gr.Button("βοΈ Edit Category")
export_button = gr.Button("πΎ Export")
refresh_button = gr.Button("π Refresh Bookmarks")
download_link = gr.File(label="π₯ Download Exported Bookmarks")
# Connect all the button actions
process_button.click(
process_uploaded_file,
inputs=[upload, state_bookmarks],
outputs=[output_text, bookmark_display, state_bookmarks, bookmark_display, bookmark_selector]
)
delete_button.click(
delete_selected_bookmarks,
inputs=[bookmark_selector, state_bookmarks],
outputs=[manage_output, bookmark_selector, bookmark_display_manage]
)
edit_category_button.click(
edit_selected_bookmarks_category,
inputs=[bookmark_selector, new_category, state_bookmarks],
outputs=[manage_output, bookmark_selector, bookmark_display_manage, state_bookmarks]
)
export_button.click(
export_bookmarks,
outputs=download_link
)
refresh_button.click(
lambda state_bookmarks: (
[
f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
for i, bookmark in enumerate(state_bookmarks)
],
display_bookmarks()
),
inputs=[state_bookmarks],
outputs=[bookmark_selector, bookmark_display_manage]
)
logger.info("Launching Gradio app")
demo.launch(debug=True)
except Exception as e:
logger.error(f"Error building Gradio app: {e}", exc_info=True)
print(f"Error building Gradio app: {e}")
if __name__ == "__main__":
# Start the LLM worker thread before launching the app
llm_thread = threading.Thread(target=llm_worker, daemon=True)
llm_thread.start()
build_app()
|