Spaces:
Paused
Paused
Create v2.txt
Browse files
v2.txt
ADDED
|
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import re
|
| 4 |
+
from groq import Groq
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import io
|
| 8 |
+
import base64
|
| 9 |
+
from datetime import datetime, timedelta
|
| 10 |
+
import json
|
| 11 |
+
|
| 12 |
+
def validate_api_key(api_key):
|
| 13 |
+
"""Validate if the API key has the correct format."""
|
| 14 |
+
# Basic format check for Groq API keys (they typically start with 'gsk_')
|
| 15 |
+
if not api_key.strip():
|
| 16 |
+
return False, "API key cannot be empty"
|
| 17 |
+
|
| 18 |
+
if not api_key.startswith("gsk_"):
|
| 19 |
+
return False, "Invalid API key format. Groq API keys typically start with 'gsk_'"
|
| 20 |
+
|
| 21 |
+
return True, "API key looks valid"
|
| 22 |
+
|
| 23 |
+
def test_api_connection(api_key):
|
| 24 |
+
"""Test the API connection with a minimal request."""
|
| 25 |
+
try:
|
| 26 |
+
client = Groq(api_key=api_key)
|
| 27 |
+
# Making a minimal API call to test the connection
|
| 28 |
+
client.chat.completions.create(
|
| 29 |
+
model="llama3-70b-8192",
|
| 30 |
+
messages=[{"role": "user", "content": "test"}],
|
| 31 |
+
max_tokens=5
|
| 32 |
+
)
|
| 33 |
+
return True, "API connection successful"
|
| 34 |
+
except Exception as e:
|
| 35 |
+
# Handle all exceptions since Groq might not expose specific error types
|
| 36 |
+
if "authentication" in str(e).lower() or "api key" in str(e).lower():
|
| 37 |
+
return False, "Authentication failed: Invalid API key"
|
| 38 |
+
else:
|
| 39 |
+
return False, f"Error connecting to Groq API: {str(e)}"
|
| 40 |
+
|
| 41 |
+
# Ensure analytics directory exists
|
| 42 |
+
os.makedirs("analytics", exist_ok=True)
|
| 43 |
+
|
| 44 |
+
def log_chat_interaction(model, tokens_used, response_time, user_message_length):
|
| 45 |
+
"""Log chat interactions for analytics"""
|
| 46 |
+
timestamp = datetime.now().isoformat()
|
| 47 |
+
|
| 48 |
+
log_file = "analytics/chat_log.json"
|
| 49 |
+
|
| 50 |
+
log_entry = {
|
| 51 |
+
"timestamp": timestamp,
|
| 52 |
+
"model": model,
|
| 53 |
+
"tokens_used": tokens_used,
|
| 54 |
+
"response_time_sec": response_time,
|
| 55 |
+
"user_message_length": user_message_length
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
# Append to existing log or create new file
|
| 59 |
+
if os.path.exists(log_file):
|
| 60 |
+
try:
|
| 61 |
+
with open(log_file, "r") as f:
|
| 62 |
+
logs = json.load(f)
|
| 63 |
+
except:
|
| 64 |
+
logs = []
|
| 65 |
+
else:
|
| 66 |
+
logs = []
|
| 67 |
+
|
| 68 |
+
logs.append(log_entry)
|
| 69 |
+
|
| 70 |
+
with open(log_file, "w") as f:
|
| 71 |
+
json.dump(logs, f, indent=2)
|
| 72 |
+
|
| 73 |
+
def get_template_prompt(template_name):
|
| 74 |
+
"""Get system prompt for a given template name"""
|
| 75 |
+
templates = {
|
| 76 |
+
"General Assistant": "You are a helpful, harmless, and honest AI assistant.",
|
| 77 |
+
"Code Helper": "You are a programming assistant. Provide detailed code explanations and examples.",
|
| 78 |
+
"Creative Writer": "You are a creative writing assistant. Generate engaging and imaginative content.",
|
| 79 |
+
"Technical Expert": "You are a technical expert. Provide accurate, detailed technical information.",
|
| 80 |
+
"Data Analyst": "You are a data analysis assistant. Help interpret and analyze data effectively."
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
return templates.get(template_name, "")
|
| 84 |
+
|
| 85 |
+
def enhanced_chat_with_groq(api_key, model, user_message, temperature, max_tokens, top_p, chat_history, template_name=""):
|
| 86 |
+
"""Enhanced chat function with analytics logging"""
|
| 87 |
+
start_time = datetime.now()
|
| 88 |
+
|
| 89 |
+
# Get system prompt if template is provided
|
| 90 |
+
system_prompt = get_template_prompt(template_name) if template_name else ""
|
| 91 |
+
|
| 92 |
+
# Validate and process as before
|
| 93 |
+
is_valid, message = validate_api_key(api_key)
|
| 94 |
+
if not is_valid:
|
| 95 |
+
return chat_history + [[user_message, f"Error: {message}"]]
|
| 96 |
+
|
| 97 |
+
connection_valid, connection_message = test_api_connection(api_key)
|
| 98 |
+
if not connection_valid:
|
| 99 |
+
return chat_history + [[user_message, f"Error: {connection_message}"]]
|
| 100 |
+
|
| 101 |
+
try:
|
| 102 |
+
# Format history
|
| 103 |
+
messages = []
|
| 104 |
+
|
| 105 |
+
if system_prompt:
|
| 106 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 107 |
+
|
| 108 |
+
for human, assistant in chat_history:
|
| 109 |
+
messages.append({"role": "user", "content": human})
|
| 110 |
+
messages.append({"role": "assistant", "content": assistant})
|
| 111 |
+
|
| 112 |
+
messages.append({"role": "user", "content": user_message})
|
| 113 |
+
|
| 114 |
+
# Make API call
|
| 115 |
+
client = Groq(api_key=api_key)
|
| 116 |
+
response = client.chat.completions.create(
|
| 117 |
+
model=model,
|
| 118 |
+
messages=messages,
|
| 119 |
+
temperature=temperature,
|
| 120 |
+
max_tokens=max_tokens,
|
| 121 |
+
top_p=top_p
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# Calculate metrics
|
| 125 |
+
end_time = datetime.now()
|
| 126 |
+
response_time = (end_time - start_time).total_seconds()
|
| 127 |
+
tokens_used = response.usage.total_tokens
|
| 128 |
+
|
| 129 |
+
# Log the interaction
|
| 130 |
+
log_chat_interaction(
|
| 131 |
+
model=model,
|
| 132 |
+
tokens_used=tokens_used,
|
| 133 |
+
response_time=response_time,
|
| 134 |
+
user_message_length=len(user_message)
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
# Extract response
|
| 138 |
+
assistant_response = response.choices[0].message.content
|
| 139 |
+
|
| 140 |
+
return chat_history + [[user_message, assistant_response]]
|
| 141 |
+
|
| 142 |
+
except Exception as e:
|
| 143 |
+
error_message = f"Error: {str(e)}"
|
| 144 |
+
return chat_history + [[user_message, error_message]]
|
| 145 |
+
|
| 146 |
+
def clear_conversation():
|
| 147 |
+
"""Clear the conversation history."""
|
| 148 |
+
return []
|
| 149 |
+
|
| 150 |
+
def plt_to_html(fig):
|
| 151 |
+
"""Convert matplotlib figure to HTML img tag"""
|
| 152 |
+
buf = io.BytesIO()
|
| 153 |
+
fig.savefig(buf, format="png", bbox_inches="tight")
|
| 154 |
+
buf.seek(0)
|
| 155 |
+
img_str = base64.b64encode(buf.read()).decode("utf-8")
|
| 156 |
+
plt.close(fig)
|
| 157 |
+
return f'<img src="data:image/png;base64,{img_str}" alt="Chart">'
|
| 158 |
+
|
| 159 |
+
def generate_analytics():
|
| 160 |
+
"""Generate analytics from the chat log"""
|
| 161 |
+
log_file = "analytics/chat_log.json"
|
| 162 |
+
|
| 163 |
+
if not os.path.exists(log_file):
|
| 164 |
+
return "No analytics data available yet.", None, None, None, []
|
| 165 |
+
|
| 166 |
+
try:
|
| 167 |
+
with open(log_file, "r") as f:
|
| 168 |
+
logs = json.load(f)
|
| 169 |
+
|
| 170 |
+
if not logs:
|
| 171 |
+
return "No analytics data available yet.", None, None, None, []
|
| 172 |
+
|
| 173 |
+
# Convert to DataFrame
|
| 174 |
+
df = pd.DataFrame(logs)
|
| 175 |
+
df["timestamp"] = pd.to_datetime(df["timestamp"])
|
| 176 |
+
|
| 177 |
+
# Generate usage by model chart
|
| 178 |
+
model_usage = df.groupby("model").agg({
|
| 179 |
+
"tokens_used": "sum",
|
| 180 |
+
"timestamp": "count"
|
| 181 |
+
}).reset_index()
|
| 182 |
+
model_usage.columns = ["model", "total_tokens", "request_count"]
|
| 183 |
+
|
| 184 |
+
fig1 = plt.figure(figsize=(10, 6))
|
| 185 |
+
plt.bar(model_usage["model"], model_usage["total_tokens"])
|
| 186 |
+
plt.title("Token Usage by Model")
|
| 187 |
+
plt.xlabel("Model")
|
| 188 |
+
plt.ylabel("Total Tokens Used")
|
| 189 |
+
plt.xticks(rotation=45)
|
| 190 |
+
plt.tight_layout()
|
| 191 |
+
model_usage_img = plt_to_html(fig1)
|
| 192 |
+
|
| 193 |
+
# Generate usage over time chart
|
| 194 |
+
df["date"] = df["timestamp"].dt.date
|
| 195 |
+
daily_usage = df.groupby("date").agg({
|
| 196 |
+
"tokens_used": "sum"
|
| 197 |
+
}).reset_index()
|
| 198 |
+
|
| 199 |
+
fig2 = plt.figure(figsize=(10, 6))
|
| 200 |
+
plt.plot(daily_usage["date"], daily_usage["tokens_used"], marker="o")
|
| 201 |
+
plt.title("Daily Token Usage")
|
| 202 |
+
plt.xlabel("Date")
|
| 203 |
+
plt.ylabel("Tokens Used")
|
| 204 |
+
plt.grid(True)
|
| 205 |
+
plt.tight_layout()
|
| 206 |
+
daily_usage_img = plt_to_html(fig2)
|
| 207 |
+
|
| 208 |
+
# Generate response time chart
|
| 209 |
+
model_response_time = df.groupby("model").agg({
|
| 210 |
+
"response_time_sec": "mean"
|
| 211 |
+
}).reset_index()
|
| 212 |
+
|
| 213 |
+
fig3 = plt.figure(figsize=(10, 6))
|
| 214 |
+
plt.bar(model_response_time["model"], model_response_time["response_time_sec"])
|
| 215 |
+
plt.title("Average Response Time by Model")
|
| 216 |
+
plt.xlabel("Model")
|
| 217 |
+
plt.ylabel("Response Time (seconds)")
|
| 218 |
+
plt.xticks(rotation=45)
|
| 219 |
+
plt.tight_layout()
|
| 220 |
+
response_time_img = plt_to_html(fig3)
|
| 221 |
+
|
| 222 |
+
# Summary statistics
|
| 223 |
+
total_tokens = df["tokens_used"].sum()
|
| 224 |
+
total_requests = len(df)
|
| 225 |
+
avg_response_time = df["response_time_sec"].mean()
|
| 226 |
+
|
| 227 |
+
# Handling the case where there might not be enough data
|
| 228 |
+
if not model_usage.empty:
|
| 229 |
+
most_used_model = model_usage.iloc[model_usage["request_count"].argmax()]["model"]
|
| 230 |
+
else:
|
| 231 |
+
most_used_model = "N/A"
|
| 232 |
+
|
| 233 |
+
summary = f"""
|
| 234 |
+
## Analytics Summary
|
| 235 |
+
|
| 236 |
+
- **Total API Requests**: {total_requests}
|
| 237 |
+
- **Total Tokens Used**: {total_tokens:,}
|
| 238 |
+
- **Average Response Time**: {avg_response_time:.2f} seconds
|
| 239 |
+
- **Most Used Model**: {most_used_model}
|
| 240 |
+
- **Date Range**: {df["timestamp"].min().date()} to {df["timestamp"].max().date()}
|
| 241 |
+
"""
|
| 242 |
+
|
| 243 |
+
return summary, model_usage_img, daily_usage_img, response_time_img, df.to_dict("records")
|
| 244 |
+
|
| 245 |
+
except Exception as e:
|
| 246 |
+
error_message = f"Error generating analytics: {str(e)}"
|
| 247 |
+
return error_message, None, None, None, []
|
| 248 |
+
|
| 249 |
+
# Define available models
|
| 250 |
+
models = [
|
| 251 |
+
"llama3-70b-8192",
|
| 252 |
+
"llama3-8b-8192",
|
| 253 |
+
"mistral-saba-24b",
|
| 254 |
+
"gemma2-9b-it",
|
| 255 |
+
"allam-2-7b"
|
| 256 |
+
]
|
| 257 |
+
|
| 258 |
+
# Define templates
|
| 259 |
+
templates = ["General Assistant", "Code Helper", "Creative Writer", "Technical Expert", "Data Analyst"]
|
| 260 |
+
|
| 261 |
+
# Create the Gradio interface
|
| 262 |
+
with gr.Blocks(title="Groq AI Chat Playground") as app:
|
| 263 |
+
gr.Markdown("# Groq AI Chat Playground")
|
| 264 |
+
|
| 265 |
+
# Create tabs for Chat and Analytics
|
| 266 |
+
with gr.Tabs():
|
| 267 |
+
with gr.Tab("Chat"):
|
| 268 |
+
# New model information accordion
|
| 269 |
+
with gr.Accordion("ℹ️ Model Information - Learn about available models", open=False):
|
| 270 |
+
gr.Markdown("""
|
| 271 |
+
### Available Models and Use Cases
|
| 272 |
+
|
| 273 |
+
**llama3-70b-8192**
|
| 274 |
+
- Meta's most powerful language model
|
| 275 |
+
- 70 billion parameters with 8192 token context window
|
| 276 |
+
- Best for: Complex reasoning, sophisticated content generation, creative writing, and detailed analysis
|
| 277 |
+
- Optimal for users needing the highest quality AI responses
|
| 278 |
+
|
| 279 |
+
**llama3-8b-8192**
|
| 280 |
+
- Lighter version of Llama 3
|
| 281 |
+
- 8 billion parameters with 8192 token context window
|
| 282 |
+
- Best for: Faster responses, everyday tasks, simpler queries
|
| 283 |
+
- Good balance between performance and speed
|
| 284 |
+
|
| 285 |
+
**mistral-saba-24b**
|
| 286 |
+
- Mistral AI's advanced model
|
| 287 |
+
- 24 billion parameters
|
| 288 |
+
- Best for: High-quality reasoning, code generation, and structured outputs
|
| 289 |
+
- Excellent for technical and professional use cases
|
| 290 |
+
|
| 291 |
+
**gemma2-9b-it**
|
| 292 |
+
- Google's instruction-tuned model
|
| 293 |
+
- 9 billion parameters
|
| 294 |
+
- Best for: Following specific instructions, educational content, and general knowledge queries
|
| 295 |
+
- Well-rounded performance for various tasks
|
| 296 |
+
|
| 297 |
+
**allam-2-7b**
|
| 298 |
+
- Specialized model from Aleph Alpha
|
| 299 |
+
- 7 billion parameters
|
| 300 |
+
- Best for: Multilingual support, concise responses, and straightforward Q&A
|
| 301 |
+
- Good for international users and simpler applications
|
| 302 |
+
|
| 303 |
+
*Note: Larger models generally provide higher quality responses but may take slightly longer to generate.*
|
| 304 |
+
""")
|
| 305 |
+
|
| 306 |
+
gr.Markdown("Enter your Groq API key to start chatting with AI models.")
|
| 307 |
+
|
| 308 |
+
with gr.Row():
|
| 309 |
+
with gr.Column(scale=2):
|
| 310 |
+
api_key_input = gr.Textbox(
|
| 311 |
+
label="Groq API Key",
|
| 312 |
+
placeholder="Enter your Groq API key (starts with gsk_)",
|
| 313 |
+
type="password"
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
with gr.Column(scale=1):
|
| 317 |
+
test_button = gr.Button("Test API Connection")
|
| 318 |
+
api_status = gr.Textbox(label="API Status", interactive=False)
|
| 319 |
+
|
| 320 |
+
with gr.Row():
|
| 321 |
+
with gr.Column(scale=2):
|
| 322 |
+
model_dropdown = gr.Dropdown(
|
| 323 |
+
choices=models,
|
| 324 |
+
label="Select Model",
|
| 325 |
+
value="llama3-70b-8192"
|
| 326 |
+
)
|
| 327 |
+
with gr.Column(scale=1):
|
| 328 |
+
template_dropdown = gr.Dropdown(
|
| 329 |
+
choices=templates,
|
| 330 |
+
label="Select Template",
|
| 331 |
+
value="General Assistant"
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
with gr.Row():
|
| 335 |
+
with gr.Column():
|
| 336 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 337 |
+
temperature_slider = gr.Slider(
|
| 338 |
+
minimum=0.0, maximum=1.0, value=0.7, step=0.01,
|
| 339 |
+
label="Temperature (higher = more creative, lower = more focused)"
|
| 340 |
+
)
|
| 341 |
+
max_tokens_slider = gr.Slider(
|
| 342 |
+
minimum=256, maximum=8192, value=4096, step=256,
|
| 343 |
+
label="Max Tokens (maximum length of response)"
|
| 344 |
+
)
|
| 345 |
+
top_p_slider = gr.Slider(
|
| 346 |
+
minimum=0.0, maximum=1.0, value=0.95, step=0.01,
|
| 347 |
+
label="Top P (nucleus sampling probability threshold)"
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
chatbot = gr.Chatbot(label="Conversation", height=500)
|
| 351 |
+
|
| 352 |
+
with gr.Row():
|
| 353 |
+
message_input = gr.Textbox(
|
| 354 |
+
label="Your Message",
|
| 355 |
+
placeholder="Type your message here...",
|
| 356 |
+
lines=3
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
with gr.Row():
|
| 360 |
+
submit_button = gr.Button("Send", variant="primary")
|
| 361 |
+
clear_button = gr.Button("Clear Conversation")
|
| 362 |
+
|
| 363 |
+
# Analytics Dashboard Tab
|
| 364 |
+
with gr.Tab("Analytics Dashboard"):
|
| 365 |
+
with gr.Column():
|
| 366 |
+
gr.Markdown("# Usage Analytics Dashboard")
|
| 367 |
+
refresh_analytics_button = gr.Button("Refresh Analytics")
|
| 368 |
+
|
| 369 |
+
analytics_summary = gr.Markdown()
|
| 370 |
+
|
| 371 |
+
with gr.Row():
|
| 372 |
+
with gr.Column():
|
| 373 |
+
model_usage_chart = gr.HTML(label="Token Usage by Model")
|
| 374 |
+
with gr.Column():
|
| 375 |
+
daily_usage_chart = gr.HTML(label="Daily Token Usage")
|
| 376 |
+
|
| 377 |
+
response_time_chart = gr.HTML(label="Response Time by Model")
|
| 378 |
+
|
| 379 |
+
with gr.Accordion("Raw Data", open=False):
|
| 380 |
+
analytics_table = gr.DataFrame(label="Raw Analytics Data")
|
| 381 |
+
|
| 382 |
+
# Connect components with functions
|
| 383 |
+
submit_button.click(
|
| 384 |
+
fn=enhanced_chat_with_groq,
|
| 385 |
+
inputs=[
|
| 386 |
+
api_key_input,
|
| 387 |
+
model_dropdown,
|
| 388 |
+
message_input,
|
| 389 |
+
temperature_slider,
|
| 390 |
+
max_tokens_slider,
|
| 391 |
+
top_p_slider,
|
| 392 |
+
chatbot,
|
| 393 |
+
template_dropdown
|
| 394 |
+
],
|
| 395 |
+
outputs=chatbot
|
| 396 |
+
).then(
|
| 397 |
+
fn=lambda: "",
|
| 398 |
+
inputs=None,
|
| 399 |
+
outputs=message_input
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
message_input.submit(
|
| 403 |
+
fn=enhanced_chat_with_groq,
|
| 404 |
+
inputs=[
|
| 405 |
+
api_key_input,
|
| 406 |
+
model_dropdown,
|
| 407 |
+
message_input,
|
| 408 |
+
temperature_slider,
|
| 409 |
+
max_tokens_slider,
|
| 410 |
+
top_p_slider,
|
| 411 |
+
chatbot,
|
| 412 |
+
template_dropdown
|
| 413 |
+
],
|
| 414 |
+
outputs=chatbot
|
| 415 |
+
).then(
|
| 416 |
+
fn=lambda: "",
|
| 417 |
+
inputs=None,
|
| 418 |
+
outputs=message_input
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
clear_button.click(
|
| 422 |
+
fn=clear_conversation,
|
| 423 |
+
inputs=None,
|
| 424 |
+
outputs=chatbot
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
test_button.click(
|
| 428 |
+
fn=test_api_connection,
|
| 429 |
+
inputs=[api_key_input],
|
| 430 |
+
outputs=[api_status]
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
refresh_analytics_button.click(
|
| 434 |
+
fn=generate_analytics,
|
| 435 |
+
inputs=[],
|
| 436 |
+
outputs=[analytics_summary, model_usage_chart, daily_usage_chart, response_time_chart, analytics_table]
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
# Launch the app
|
| 440 |
+
if __name__ == "__main__":
|
| 441 |
+
app.launch(share=False)
|