EduGuide / app.py
shukdevdatta123's picture
Update app.py
2777751 verified
import gradio as gr
import os
import re
from groq import Groq
import pandas as pd
import matplotlib.pyplot as plt
import io
import base64
from datetime import datetime, timedelta
import json
def validate_api_key(api_key):
"""Validate if the API key has the correct format."""
# Basic format check for Groq API keys (they typically start with 'gsk_')
if not api_key.strip():
return False, "API key cannot be empty"
if not api_key.startswith("gsk_"):
return False, "Invalid API key format. Groq API keys typically start with 'gsk_'"
return True, "API key looks valid"
def test_api_connection(api_key):
"""Test the API connection with a minimal request."""
try:
client = Groq(api_key=api_key)
# Making a minimal API call to test the connection
client.chat.completions.create(
model="llama3-70b-8192",
messages=[{"role": "user", "content": "test"}],
max_tokens=5
)
return True, "API connection successful"
except Exception as e:
# Handle all exceptions since Groq might not expose specific error types
if "authentication" in str(e).lower() or "api key" in str(e).lower():
return False, "Authentication failed: Invalid API key"
else:
return False, f"Error connecting to Groq API: {str(e)}"
# Ensure analytics directory exists
os.makedirs("analytics", exist_ok=True)
def log_chat_interaction(model, tokens_used, response_time, user_message_length):
"""Log chat interactions for analytics"""
timestamp = datetime.now().isoformat()
log_file = "analytics/chat_log.json"
log_entry = {
"timestamp": timestamp,
"model": model,
"tokens_used": tokens_used,
"response_time_sec": response_time,
"user_message_length": user_message_length
}
# Append to existing log or create new file
if os.path.exists(log_file):
try:
with open(log_file, "r") as f:
logs = json.load(f)
except:
logs = []
else:
logs = []
logs.append(log_entry)
with open(log_file, "w") as f:
json.dump(logs, f, indent=2)
def get_template_prompt(template_name):
"""Get system prompt for a given template name"""
templates = {
"General Assistant": "You are a helpful, harmless, and honest AI assistant.",
"Code Helper": "You are a programming assistant. Provide detailed code explanations and examples.",
"Creative Writer": "You are a creative writing assistant. Generate engaging and imaginative content.",
"Technical Expert": "You are a technical expert. Provide accurate, detailed technical information.",
"Data Analyst": "You are a data analysis assistant. Help interpret and analyze data effectively."
}
return templates.get(template_name, "")
def enhanced_chat_with_groq(api_key, model, user_message, temperature, max_tokens, top_p, chat_history, template_name=""):
"""Enhanced chat function with analytics logging"""
start_time = datetime.now()
# Get system prompt if template is provided
system_prompt = get_template_prompt(template_name) if template_name else ""
# Validate and process as before
is_valid, message = validate_api_key(api_key)
if not is_valid:
return chat_history + [[user_message, f"Error: {message}"]]
connection_valid, connection_message = test_api_connection(api_key)
if not connection_valid:
return chat_history + [[user_message, f"Error: {connection_message}"]]
try:
# Format history
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
for human, assistant in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": user_message})
# Make API call
client = Groq(api_key=api_key)
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p
)
# Calculate metrics
end_time = datetime.now()
response_time = (end_time - start_time).total_seconds()
tokens_used = response.usage.total_tokens
# Log the interaction
log_chat_interaction(
model=model,
tokens_used=tokens_used,
response_time=response_time,
user_message_length=len(user_message)
)
# Extract response
assistant_response = response.choices[0].message.content
return chat_history + [[user_message, assistant_response]]
except Exception as e:
error_message = f"Error: {str(e)}"
return chat_history + [[user_message, error_message]]
def clear_conversation():
"""Clear the conversation history."""
return []
def plt_to_html(fig):
"""Convert matplotlib figure to HTML img tag"""
buf = io.BytesIO()
fig.savefig(buf, format="png", bbox_inches="tight")
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode("utf-8")
plt.close(fig)
return f'<img src="data:image/png;base64,{img_str}" alt="Chart">'
def clear_analytics():
"""Clear all analytics data by removing the log file"""
log_file = "analytics/chat_log.json"
if os.path.exists(log_file):
try:
os.remove(log_file)
return "Analytics data cleared successfully."
except Exception as e:
return f"Error clearing analytics: {str(e)}"
else:
return "No analytics data to clear."
def generate_analytics():
"""Generate analytics from the chat log"""
log_file = "analytics/chat_log.json"
if not os.path.exists(log_file):
return "No analytics data available yet.", None, None
try:
with open(log_file, "r") as f:
logs = json.load(f)
if not logs:
return "No analytics data available yet.", None, None
# Convert to DataFrame
df = pd.DataFrame(logs)
df["timestamp"] = pd.to_datetime(df["timestamp"])
# Generate usage by model chart
model_usage = df.groupby("model").agg({
"tokens_used": "sum",
"timestamp": "count"
}).reset_index()
model_usage.columns = ["model", "total_tokens", "request_count"]
fig1 = plt.figure(figsize=(10, 6))
plt.bar(model_usage["model"], model_usage["total_tokens"])
plt.title("Token Usage by Model")
plt.xlabel("Model")
plt.ylabel("Total Tokens Used")
plt.xticks(rotation=45)
plt.tight_layout()
model_usage_img = plt_to_html(fig1)
# Generate response time chart
model_response_time = df.groupby("model").agg({
"response_time_sec": "mean"
}).reset_index()
fig3 = plt.figure(figsize=(10, 6))
plt.bar(model_response_time["model"], model_response_time["response_time_sec"])
plt.title("Average Response Time by Model")
plt.xlabel("Model")
plt.ylabel("Response Time (seconds)")
plt.xticks(rotation=45)
plt.tight_layout()
response_time_img = plt_to_html(fig3)
# Summary statistics
total_tokens = df["tokens_used"].sum()
total_requests = len(df)
avg_response_time = df["response_time_sec"].mean()
# Handling the case where there might not be enough data
if not model_usage.empty:
most_used_model = model_usage.iloc[model_usage["request_count"].argmax()]["model"]
else:
most_used_model = "N/A"
summary = f"""
## Analytics Summary
- **Total API Requests**: {total_requests}
- **Total Tokens Used**: {total_tokens:,}
- **Average Response Time**: {avg_response_time:.2f} seconds
- **Most Used Model**: {most_used_model}
- **Date Range**: {df["timestamp"].min().date()} to {df["timestamp"].max().date()}
"""
return summary, model_usage_img, response_time_img
except Exception as e:
error_message = f"Error generating analytics: {str(e)}"
return error_message, None, None
# Define available models
models = [
"llama3-70b-8192",
"llama3-8b-8192",
"mistral-saba-24b",
"gemma2-9b-it",
"allam-2-7b"
]
# Define templates
templates = ["General Assistant", "Code Helper", "Creative Writer", "Technical Expert", "Data Analyst"]
# Create the Gradio interface
with gr.Blocks(title="Groq AI Chat Playground") as app:
gr.Markdown("# Groq AI Chat Playground")
# Create tabs for Chat and Analytics
with gr.Tabs():
with gr.Tab("Chat"):
# New model information accordion
with gr.Accordion("ℹ️ Model Information - Learn about available models", open=False):
gr.Markdown("""
### Available Models and Use Cases
**llama3-70b-8192**
- Meta's most powerful language model
- 70 billion parameters with 8192 token context window
- Best for: Complex reasoning, sophisticated content generation, creative writing, and detailed analysis
- Optimal for users needing the highest quality AI responses
**llama3-8b-8192**
- Lighter version of Llama 3
- 8 billion parameters with 8192 token context window
- Best for: Faster responses, everyday tasks, simpler queries
- Good balance between performance and speed
**mistral-saba-24b**
- Mistral AI's advanced model
- 24 billion parameters
- Best for: High-quality reasoning, code generation, and structured outputs
- Excellent for technical and professional use cases
**gemma2-9b-it**
- Google's instruction-tuned model
- 9 billion parameters
- Best for: Following specific instructions, educational content, and general knowledge queries
- Well-rounded performance for various tasks
**allam-2-7b**
- Specialized model from Aleph Alpha
- 7 billion parameters
- Best for: Multilingual support, concise responses, and straightforward Q&A
- Good for international users and simpler applications
*Note: Larger models generally provide higher quality responses but may take slightly longer to generate.*
""")
gr.Markdown("Enter your Groq API key to start chatting with AI models.")
with gr.Row():
with gr.Column(scale=2):
api_key_input = gr.Textbox(
label="Groq API Key",
placeholder="Enter your Groq API key (starts with gsk_)",
type="password"
)
with gr.Column(scale=1):
test_button = gr.Button("Test API Connection")
api_status = gr.Textbox(label="API Status", interactive=False)
with gr.Row():
with gr.Column(scale=2):
model_dropdown = gr.Dropdown(
choices=models,
label="Select Model",
value="llama3-70b-8192"
)
with gr.Column(scale=1):
template_dropdown = gr.Dropdown(
choices=templates,
label="Select Template",
value="General Assistant"
)
with gr.Row():
with gr.Column():
with gr.Accordion("Advanced Settings", open=False):
temperature_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=0.7, step=0.01,
label="Temperature (higher = more creative, lower = more focused)"
)
max_tokens_slider = gr.Slider(
minimum=256, maximum=8192, value=4096, step=256,
label="Max Tokens (maximum length of response)"
)
top_p_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=0.95, step=0.01,
label="Top P (nucleus sampling probability threshold)"
)
chatbot = gr.Chatbot(label="Conversation", height=500)
with gr.Row():
message_input = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=3
)
with gr.Row():
submit_button = gr.Button("Send", variant="primary")
clear_button = gr.Button("Clear Conversation")
# Analytics Dashboard Tab
with gr.Tab("Analytics Dashboard"):
with gr.Column():
gr.Markdown("# Usage Analytics Dashboard")
with gr.Row():
refresh_analytics_button = gr.Button("Refresh Analytics")
clear_analytics_button = gr.Button("Clear Analytics", variant="secondary")
analytics_status = gr.Markdown()
analytics_summary = gr.Markdown()
with gr.Row():
with gr.Column():
model_usage_chart = gr.HTML(label="Token Usage by Model")
response_time_chart = gr.HTML(label="Response Time by Model")
# Connect components with functions
submit_button.click(
fn=enhanced_chat_with_groq,
inputs=[api_key_input, model_dropdown, message_input, temperature_slider, max_tokens_slider, top_p_slider, chatbot, template_dropdown],
outputs=chatbot
).then(
fn=lambda: "",
inputs=None,
outputs=message_input
)
message_input.submit(
fn=enhanced_chat_with_groq,
inputs=[api_key_input, model_dropdown, message_input, temperature_slider, max_tokens_slider, top_p_slider, chatbot, template_dropdown],
outputs=chatbot
).then(
fn=lambda: "",
inputs=None,
outputs=message_input
)
clear_button.click(
fn=clear_conversation,
inputs=None,
outputs=chatbot
)
test_button.click(
fn=test_api_connection,
inputs=[api_key_input],
outputs=[api_status]
)
refresh_analytics_button.click(
fn=generate_analytics,
inputs=[],
outputs=[analytics_summary, model_usage_chart, response_time_chart]
)
clear_analytics_button.click(
fn=clear_analytics,
inputs=[],
outputs=[analytics_status]
).then(
fn=generate_analytics,
inputs=[],
outputs=[analytics_summary, model_usage_chart, response_time_chart]
)
# Launch the app
if __name__ == "__main__":
app.launch(share=False)