import gradio as gr import pandas as pd import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load model and tokenizer globally for efficiency model_name = "tabularisai/multilingual-sentiment-analysis" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) def predict_sentiment(texts): """ Predict sentiment for a list of texts """ inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) sentiment_map = { 0: "Very Negative", 1: "Negative", 2: "Neutral", 3: "Positive", 4: "Very Positive" } return [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()] def process_file(file_obj): """ Process the input file and add sentiment analysis results """ try: # Read the file based on its extension file_path = file_obj.name if file_path.endswith('.csv'): df = pd.read_csv(file_path) elif file_path.endswith(('.xlsx', '.xls')): df = pd.read_excel(file_path) else: raise ValueError("Unsupported file format. Please upload a CSV or Excel file.") # Verify that 'Reviews' column exists if 'Reviews' not in df.columns: raise ValueError("Input file must contain a 'Reviews' column.") # Perform sentiment analysis reviews = df['Reviews'].fillna("") # Handle any missing values sentiments = predict_sentiment(reviews.tolist()) # Add results to the dataframe df['Sentiment'] = sentiments # Save the results to a new Excel file output_path = "output_with_sentiment.xlsx" df.to_excel(output_path, index=False) return df, output_path except Exception as e: raise gr.Error(str(e)) # Create Gradio interface with gr.Blocks() as interface: gr.Markdown("# Review Sentiment Analysis") gr.Markdown("Upload an Excel or CSV file with a 'Reviews' column to analyze sentiment.") with gr.Row(): file_input = gr.File( label="Upload File (CSV or Excel)", file_types=[".csv", ".xlsx", ".xls"] ) with gr.Row(): analyze_btn = gr.Button("Analyze Sentiments") with gr.Row(): output_df = gr.Dataframe(label="Results Preview") output_file = gr.File(label="Download Results") analyze_btn.click( fn=process_file, inputs=[file_input], outputs=[output_df, output_file] ) # Launch the interface interface.launch()