Spaces:
No application file
No application file
import gradio as gr | |
import pandas as pd | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
# Load model and tokenizer globally for efficiency | |
model_name = "tabularisai/multilingual-sentiment-analysis" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
def predict_sentiment(texts): | |
""" | |
Predict sentiment for a list of texts | |
""" | |
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
sentiment_map = { | |
0: "Very Negative", | |
1: "Negative", | |
2: "Neutral", | |
3: "Positive", | |
4: "Very Positive" | |
} | |
return [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()] | |
def process_file(file_obj): | |
""" | |
Process the input file and add sentiment analysis results | |
""" | |
try: | |
# Read the file based on its extension | |
file_path = file_obj.name | |
if file_path.endswith('.csv'): | |
df = pd.read_csv(file_path) | |
elif file_path.endswith(('.xlsx', '.xls')): | |
df = pd.read_excel(file_path) | |
else: | |
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.") | |
# Verify that 'Reviews' column exists | |
if 'Reviews' not in df.columns: | |
raise ValueError("Input file must contain a 'Reviews' column.") | |
# Perform sentiment analysis | |
reviews = df['Reviews'].fillna("") # Handle any missing values | |
sentiments = predict_sentiment(reviews.tolist()) | |
# Add results to the dataframe | |
df['Sentiment'] = sentiments | |
# Save the results to a new Excel file | |
output_path = "output_with_sentiment.xlsx" | |
df.to_excel(output_path, index=False) | |
return df, output_path | |
except Exception as e: | |
raise gr.Error(str(e)) | |
# Create Gradio interface | |
with gr.Blocks() as interface: | |
gr.Markdown("# Review Sentiment Analysis") | |
gr.Markdown("Upload an Excel or CSV file with a 'Reviews' column to analyze sentiment.") | |
with gr.Row(): | |
file_input = gr.File( | |
label="Upload File (CSV or Excel)", | |
file_types=[".csv", ".xlsx", ".xls"] | |
) | |
with gr.Row(): | |
analyze_btn = gr.Button("Analyze Sentiments") | |
with gr.Row(): | |
output_df = gr.Dataframe(label="Results Preview") | |
output_file = gr.File(label="Download Results") | |
analyze_btn.click( | |
fn=process_file, | |
inputs=[file_input], | |
outputs=[output_df, output_file] | |
) | |
# Launch the interface | |
interface.launch() |