File size: 12,084 Bytes
50fe41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfa43e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import gradio as gr
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import plotly.express as px
import plotly.graph_objects as go
from collections import defaultdict
from openai import OpenAI
from pydantic import BaseModel, Field, field_validator, ValidationInfo
from typing import Optional, Dict, Any, List, Annotated
from instructor import patch
import instructor
from prompts import sentiments_prompt

# Load model and tokenizer globally for efficiency
model_name = "tabularisai/multilingual-sentiment-analysis"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# Define sentiment weights for score calculation
SENTIMENT_WEIGHTS = {
    0: 0.0,  # Very Negative
    1: 0.25,  # Negative
    2: 0.5,  # Neutral
    3: 0.75,  # Positive
    4: 1.0  # Very Positive
}

class ExtractProductSentiment(BaseModel):
    """Extracts what people like and dislike about a product based on product reviews and sentiment scores (0-100)"""
    product_likes: List[str] = Field(..., description="What people like about the product. List of 3 sentences AT MOST. Must be aggregated in the order of importance.")
    product_dislikes: List[str] = Field(..., description="What people dislike about the product. List of 3 sentences AT MOST. Must be aggregated in the order of importance.")

    @field_validator("product_likes", "product_dislikes")
    def validate_product_likes_and_dislikes(cls, v, info: ValidationInfo):
        if not v:
            raise ValueError(f"At least one {info.field_name} must be provided. If nothing to say, please enter 'None'")
        
        if len(v) > 3:
            raise ValueError(
                f"{info.field_name} contains {len(v)} points. Please aggregate the points to a maximum of 3 key points "
                "in order of importance. Combine similar points together."
            )
        return v

def predict_sentiment_with_scores(texts):
    """

    Predict sentiment for a list of texts and return both class labels and sentiment scores

    """
    inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512)
    with torch.no_grad():
        outputs = model(**inputs)

    probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)

    # Get predicted classes
    sentiment_map = {
        0: "Very Negative",
        1: "Negative",
        2: "Neutral",
        3: "Positive",
        4: "Very Positive"
    }
    predicted_classes = [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()]

    # Calculate sentiment scores (0-100)
    sentiment_scores = []
    for prob in probabilities:
        # Weighted sum of probabilities
        score = sum(prob[i].item() * SENTIMENT_WEIGHTS[i] for i in range(len(prob)))
        # Scale to 0-100
        sentiment_scores.append(round(score * 100, 2))

    return predicted_classes, sentiment_scores

#patch()  # Patch OpenAI client to support response models

def get_product_sentiment(client, reviews: List[str], scores: List[float]) -> ExtractProductSentiment:
    """Extract product likes and dislikes using OpenAI"""
    # Combine reviews and scores for context
    review_context = "\n".join([f"Review (Score: {score}): {review}" 
                               for review, score in zip(reviews, scores)])
    #client = instructor.patch(OpenAI(api_key=openai_api_key))
    prompt = sentiments_prompt.format(review_context=review_context)

    response = client.chat.completions.create(
        model="gpt-4o",
        response_model=ExtractProductSentiment,
        messages=[
            {"role": "system", "content": "You are a helpful product analyst."},
            {"role": "user", "content": prompt}
        ],
        max_retries=3
    )
    return response

def create_comparison_charts(sentiment_results, avg_sentiment_scores):
    """

    Create comparison charts for sentiment analysis across products

    """
    # Create summary DataFrame
    summary_data = []
    for product in sentiment_results.keys():
        counts = sentiment_results[product]
        total = counts.sum()
        row = {
            'Product': product,
            'Average Sentiment Score': avg_sentiment_scores[product],
            'Total Reviews': total,
            'Very Positive %': round((counts.get('Very Positive', 0) / total) * 100, 2),
            'Positive %': round((counts.get('Positive', 0) / total) * 100, 2),
            'Neutral %': round((counts.get('Neutral', 0) / total) * 100, 2),
            'Negative %': round((counts.get('Negative', 0) / total) * 100, 2),
            'Very Negative %': round((counts.get('Very Negative', 0) / total) * 100, 2)
        }
        summary_data.append(row)
    
    summary_df = pd.DataFrame(summary_data)

    # Score comparison chart
    score_comparison_fig = px.bar(
        summary_df,
        x='Product',
        y='Average Sentiment Score',
        title='Average Sentiment Scores by Product',
        labels={'Average Sentiment Score': 'Score (0-100)'}
    )

    # Distribution chart
    distribution_data = []
    for product in sentiment_results.keys():
        counts = sentiment_results[product]
        # Aggregate positive and negative sentiments
        aggregated_counts = {
            'Positive': counts.get('Very Positive', 0) + counts.get('Positive', 0),
            'Neutral': counts.get('Neutral', 0),
            'Negative': counts.get('Very Negative', 0) + counts.get('Negative', 0)
        }
        for sentiment, count in aggregated_counts.items():
            distribution_data.append({
                'Product': product,
                'Sentiment': sentiment,
                'Count': count
            })
    
    distribution_df = pd.DataFrame(distribution_data)
    distribution_fig = px.bar(
        distribution_df,
        x='Product',
        y='Count',
        color='Sentiment',
        title='Sentiment Distribution by Product',
        barmode='group',
        color_discrete_map={
            'Positive': '#2ECC71',  # Green
            'Neutral': '#F1C40F',   # Yellow
            'Negative': '#E74C3C'   # Red
        }
    )

    # Ratio chart (percentage stacked bar)
    ratio_fig = px.bar(
        distribution_df,
        x='Product',
        y='Count',
        color='Sentiment',
        title='Sentiment Distribution Ratio by Product',
        barmode='relative'
    )

    return score_comparison_fig, distribution_fig, ratio_fig, summary_df

def process_single_sheet(df, product_name, openai_client):
    """

    Process a single dataframe and return sentiment analysis results

    """
    if 'Reviews' not in df.columns:
        raise ValueError(f"'Reviews' column not found in sheet/file for {product_name}")

    reviews = df['Reviews'].fillna("")
    sentiments, scores = predict_sentiment_with_scores(reviews.tolist())

    df['Sentiment'] = sentiments
    df['Sentiment_Score'] = scores

    # Extract product likes and dislikes
    try:
        product_sentiment = get_product_sentiment(openai_client, reviews.tolist(), scores)
        
        # Initialize empty columns
        df['Likes'] = ""
        df['Dislikes'] = ""
        
        # Get the likes and dislikes lists
        likes_list = product_sentiment.product_likes
        dislikes_list = product_sentiment.product_dislikes
        
        # Only populate the first N rows where N is the length of the likes/dislikes lists
        for idx, (like, dislike) in enumerate(zip(likes_list, dislikes_list)):
            df.loc[idx, 'Likes'] = like
            df.loc[idx, 'Dislikes'] = dislike
            
    except Exception as e:
        print(f"Error extracting likes/dislikes for {product_name}: {str(e)}")
        df['Likes'] = ""
        df['Dislikes'] = ""

    # Calculate sentiment distribution
    sentiment_counts = pd.Series(sentiments).value_counts()
    avg_sentiment_score = round(sum(scores) / len(scores), 2)

    return df, sentiment_counts, avg_sentiment_score

def process_file(file_obj, api_key):
    """

    Process the input file and add sentiment analysis results

    """
    try:
        if not api_key:
            raise ValueError("OpenAI API key is required")
            
        client = instructor.patch(OpenAI(api_key=api_key))
        
        file_path = file_obj.name
        sentiment_results = defaultdict(pd.Series)
        avg_sentiment_scores = {}
        all_processed_dfs = {}

        if file_path.endswith('.csv'):
            df = pd.read_csv(file_path)
            product_name = "Product"  # Default name for CSV
            processed_df, sentiment_counts, avg_score = process_single_sheet(df, product_name, client)
            all_processed_dfs[product_name] = processed_df
            sentiment_results[product_name] = sentiment_counts
            avg_sentiment_scores[product_name] = avg_score

        elif file_path.endswith(('.xlsx', '.xls')):
            excel_file = pd.ExcelFile(file_path)
            for sheet_name in excel_file.sheet_names:
                df = pd.read_excel(file_path, sheet_name=sheet_name)
                processed_df, sentiment_counts, avg_score = process_single_sheet(df, sheet_name, client)
                all_processed_dfs[sheet_name] = processed_df
                sentiment_results[sheet_name] = sentiment_counts
                avg_sentiment_scores[sheet_name] = avg_score
        else:
            raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")

        # Create visualizations with new sentiment score chart
        score_comparison_fig, distribution_fig, ratio_fig, summary_df = create_comparison_charts(
            sentiment_results, avg_sentiment_scores
        )

        # Save results
        output_path = "sentiment_analysis_results.xlsx"
        with pd.ExcelWriter(output_path) as writer:
            for sheet_name, df in all_processed_dfs.items():
                df.to_excel(writer, sheet_name=sheet_name, index=False)
            if isinstance(summary_df, pd.DataFrame):  # Safety check
                summary_df.to_excel(writer, sheet_name='Summary', index=False)

        return score_comparison_fig, distribution_fig, summary_df, output_path

    except Exception as e:
        raise gr.Error(str(e))


# Update the Gradio interface
with gr.Blocks() as interface:
    gr.Markdown("# Product Review Sentiment Analysis")

    gr.Markdown("""

    ### Quick Guide

    1. **Excel File (Multiple Products)**:

       - Create separate sheets for each product

       - Name sheets with product/company names

       - Include "Reviews" column in each sheet



    2. **CSV File (Single Product)**:

       - Include "Reviews" column



    Upload your file and click Analyze to get started.

    """)

    with gr.Row():
        api_key_input = gr.Textbox(
            label="OpenAI API Key",
            placeholder="Enter your OpenAI API key",
            type="password"
        )

    with gr.Row():
        file_input = gr.File(
            label="Upload File (CSV or Excel)",
            file_types=[".csv", ".xlsx", ".xls"]
        )

    with gr.Row():
        analyze_btn = gr.Button("Analyze Sentiments")

    with gr.Row():
        sentiment_score_plot = gr.Plot(label="Weighted Sentiment Scores")

    with gr.Row():
        distribution_plot = gr.Plot(label="Sentiment Distribution")

    with gr.Row():
        summary_table = gr.Dataframe(label="Summary Metrics")

    with gr.Row():
        output_file = gr.File(label="Download Full Report")

    analyze_btn.click(
        fn=process_file,
        inputs=[file_input, api_key_input],
        outputs=[sentiment_score_plot, distribution_plot, summary_table, output_file]
    )

# Launch interface
interface.launch()