File size: 12,084 Bytes
50fe41a bfa43e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import gradio as gr
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import plotly.express as px
import plotly.graph_objects as go
from collections import defaultdict
from openai import OpenAI
from pydantic import BaseModel, Field, field_validator, ValidationInfo
from typing import Optional, Dict, Any, List, Annotated
from instructor import patch
import instructor
from prompts import sentiments_prompt
# Load model and tokenizer globally for efficiency
model_name = "tabularisai/multilingual-sentiment-analysis"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Define sentiment weights for score calculation
SENTIMENT_WEIGHTS = {
0: 0.0, # Very Negative
1: 0.25, # Negative
2: 0.5, # Neutral
3: 0.75, # Positive
4: 1.0 # Very Positive
}
class ExtractProductSentiment(BaseModel):
"""Extracts what people like and dislike about a product based on product reviews and sentiment scores (0-100)"""
product_likes: List[str] = Field(..., description="What people like about the product. List of 3 sentences AT MOST. Must be aggregated in the order of importance.")
product_dislikes: List[str] = Field(..., description="What people dislike about the product. List of 3 sentences AT MOST. Must be aggregated in the order of importance.")
@field_validator("product_likes", "product_dislikes")
def validate_product_likes_and_dislikes(cls, v, info: ValidationInfo):
if not v:
raise ValueError(f"At least one {info.field_name} must be provided. If nothing to say, please enter 'None'")
if len(v) > 3:
raise ValueError(
f"{info.field_name} contains {len(v)} points. Please aggregate the points to a maximum of 3 key points "
"in order of importance. Combine similar points together."
)
return v
def predict_sentiment_with_scores(texts):
"""
Predict sentiment for a list of texts and return both class labels and sentiment scores
"""
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get predicted classes
sentiment_map = {
0: "Very Negative",
1: "Negative",
2: "Neutral",
3: "Positive",
4: "Very Positive"
}
predicted_classes = [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()]
# Calculate sentiment scores (0-100)
sentiment_scores = []
for prob in probabilities:
# Weighted sum of probabilities
score = sum(prob[i].item() * SENTIMENT_WEIGHTS[i] for i in range(len(prob)))
# Scale to 0-100
sentiment_scores.append(round(score * 100, 2))
return predicted_classes, sentiment_scores
#patch() # Patch OpenAI client to support response models
def get_product_sentiment(client, reviews: List[str], scores: List[float]) -> ExtractProductSentiment:
"""Extract product likes and dislikes using OpenAI"""
# Combine reviews and scores for context
review_context = "\n".join([f"Review (Score: {score}): {review}"
for review, score in zip(reviews, scores)])
#client = instructor.patch(OpenAI(api_key=openai_api_key))
prompt = sentiments_prompt.format(review_context=review_context)
response = client.chat.completions.create(
model="gpt-4o",
response_model=ExtractProductSentiment,
messages=[
{"role": "system", "content": "You are a helpful product analyst."},
{"role": "user", "content": prompt}
],
max_retries=3
)
return response
def create_comparison_charts(sentiment_results, avg_sentiment_scores):
"""
Create comparison charts for sentiment analysis across products
"""
# Create summary DataFrame
summary_data = []
for product in sentiment_results.keys():
counts = sentiment_results[product]
total = counts.sum()
row = {
'Product': product,
'Average Sentiment Score': avg_sentiment_scores[product],
'Total Reviews': total,
'Very Positive %': round((counts.get('Very Positive', 0) / total) * 100, 2),
'Positive %': round((counts.get('Positive', 0) / total) * 100, 2),
'Neutral %': round((counts.get('Neutral', 0) / total) * 100, 2),
'Negative %': round((counts.get('Negative', 0) / total) * 100, 2),
'Very Negative %': round((counts.get('Very Negative', 0) / total) * 100, 2)
}
summary_data.append(row)
summary_df = pd.DataFrame(summary_data)
# Score comparison chart
score_comparison_fig = px.bar(
summary_df,
x='Product',
y='Average Sentiment Score',
title='Average Sentiment Scores by Product',
labels={'Average Sentiment Score': 'Score (0-100)'}
)
# Distribution chart
distribution_data = []
for product in sentiment_results.keys():
counts = sentiment_results[product]
# Aggregate positive and negative sentiments
aggregated_counts = {
'Positive': counts.get('Very Positive', 0) + counts.get('Positive', 0),
'Neutral': counts.get('Neutral', 0),
'Negative': counts.get('Very Negative', 0) + counts.get('Negative', 0)
}
for sentiment, count in aggregated_counts.items():
distribution_data.append({
'Product': product,
'Sentiment': sentiment,
'Count': count
})
distribution_df = pd.DataFrame(distribution_data)
distribution_fig = px.bar(
distribution_df,
x='Product',
y='Count',
color='Sentiment',
title='Sentiment Distribution by Product',
barmode='group',
color_discrete_map={
'Positive': '#2ECC71', # Green
'Neutral': '#F1C40F', # Yellow
'Negative': '#E74C3C' # Red
}
)
# Ratio chart (percentage stacked bar)
ratio_fig = px.bar(
distribution_df,
x='Product',
y='Count',
color='Sentiment',
title='Sentiment Distribution Ratio by Product',
barmode='relative'
)
return score_comparison_fig, distribution_fig, ratio_fig, summary_df
def process_single_sheet(df, product_name, openai_client):
"""
Process a single dataframe and return sentiment analysis results
"""
if 'Reviews' not in df.columns:
raise ValueError(f"'Reviews' column not found in sheet/file for {product_name}")
reviews = df['Reviews'].fillna("")
sentiments, scores = predict_sentiment_with_scores(reviews.tolist())
df['Sentiment'] = sentiments
df['Sentiment_Score'] = scores
# Extract product likes and dislikes
try:
product_sentiment = get_product_sentiment(openai_client, reviews.tolist(), scores)
# Initialize empty columns
df['Likes'] = ""
df['Dislikes'] = ""
# Get the likes and dislikes lists
likes_list = product_sentiment.product_likes
dislikes_list = product_sentiment.product_dislikes
# Only populate the first N rows where N is the length of the likes/dislikes lists
for idx, (like, dislike) in enumerate(zip(likes_list, dislikes_list)):
df.loc[idx, 'Likes'] = like
df.loc[idx, 'Dislikes'] = dislike
except Exception as e:
print(f"Error extracting likes/dislikes for {product_name}: {str(e)}")
df['Likes'] = ""
df['Dislikes'] = ""
# Calculate sentiment distribution
sentiment_counts = pd.Series(sentiments).value_counts()
avg_sentiment_score = round(sum(scores) / len(scores), 2)
return df, sentiment_counts, avg_sentiment_score
def process_file(file_obj, api_key):
"""
Process the input file and add sentiment analysis results
"""
try:
if not api_key:
raise ValueError("OpenAI API key is required")
client = instructor.patch(OpenAI(api_key=api_key))
file_path = file_obj.name
sentiment_results = defaultdict(pd.Series)
avg_sentiment_scores = {}
all_processed_dfs = {}
if file_path.endswith('.csv'):
df = pd.read_csv(file_path)
product_name = "Product" # Default name for CSV
processed_df, sentiment_counts, avg_score = process_single_sheet(df, product_name, client)
all_processed_dfs[product_name] = processed_df
sentiment_results[product_name] = sentiment_counts
avg_sentiment_scores[product_name] = avg_score
elif file_path.endswith(('.xlsx', '.xls')):
excel_file = pd.ExcelFile(file_path)
for sheet_name in excel_file.sheet_names:
df = pd.read_excel(file_path, sheet_name=sheet_name)
processed_df, sentiment_counts, avg_score = process_single_sheet(df, sheet_name, client)
all_processed_dfs[sheet_name] = processed_df
sentiment_results[sheet_name] = sentiment_counts
avg_sentiment_scores[sheet_name] = avg_score
else:
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")
# Create visualizations with new sentiment score chart
score_comparison_fig, distribution_fig, ratio_fig, summary_df = create_comparison_charts(
sentiment_results, avg_sentiment_scores
)
# Save results
output_path = "sentiment_analysis_results.xlsx"
with pd.ExcelWriter(output_path) as writer:
for sheet_name, df in all_processed_dfs.items():
df.to_excel(writer, sheet_name=sheet_name, index=False)
if isinstance(summary_df, pd.DataFrame): # Safety check
summary_df.to_excel(writer, sheet_name='Summary', index=False)
return score_comparison_fig, distribution_fig, summary_df, output_path
except Exception as e:
raise gr.Error(str(e))
# Update the Gradio interface
with gr.Blocks() as interface:
gr.Markdown("# Product Review Sentiment Analysis")
gr.Markdown("""
### Quick Guide
1. **Excel File (Multiple Products)**:
- Create separate sheets for each product
- Name sheets with product/company names
- Include "Reviews" column in each sheet
2. **CSV File (Single Product)**:
- Include "Reviews" column
Upload your file and click Analyze to get started.
""")
with gr.Row():
api_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your OpenAI API key",
type="password"
)
with gr.Row():
file_input = gr.File(
label="Upload File (CSV or Excel)",
file_types=[".csv", ".xlsx", ".xls"]
)
with gr.Row():
analyze_btn = gr.Button("Analyze Sentiments")
with gr.Row():
sentiment_score_plot = gr.Plot(label="Weighted Sentiment Scores")
with gr.Row():
distribution_plot = gr.Plot(label="Sentiment Distribution")
with gr.Row():
summary_table = gr.Dataframe(label="Summary Metrics")
with gr.Row():
output_file = gr.File(label="Download Full Report")
analyze_btn.click(
fn=process_file,
inputs=[file_input, api_key_input],
outputs=[sentiment_score_plot, distribution_plot, summary_table, output_file]
)
# Launch interface
interface.launch() |