File size: 760 Bytes
5e1e3c6 142d567 5e1e3c6 309ab9e 142d567 5e1e3c6 142d567 5e1e3c6 874cc65 ec5a030 5e1e3c6 05ce864 229bd35 05ce864 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline
# 创建 FastAPI 实例
app = FastAPI()
# 加载预训练模型
sentiment_model = pipeline("text-classification", model="wajidlinux99/gibberish-text-detector")
# 定义请求体的格式
class TextRequest(BaseModel):
text: str
# 定义一个 POST 请求处理函数
@app.post("/predict")
async def predict(request: TextRequest):
result = sentiment_model(request.text)
# 遍历 result 列表,检查每个元素的label
for item in result:
if item["label"] == "clean":
item["score"] = 1 - item["score"]
return {"result": result}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |